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Abstract
Background: Recently, pattern recognition methods have been deployed in the 
classification of multiple activation states from mechanomyogram (MMG) signals for the 
purpose of controlling switching interfaces. Given the propagative properties of MMG 
signals, it has been suggested that MMG classification should be robust to changes in 
sensor placement. Nonetheless, this purported robustness remains speculative to date. 
This study sought to quantify the change in classification accuracy, if any, when a classifier 
trained with MMG signals from the muscle belly, is subsequently tested with MMG signals 
from a nearby location.

Methods: An arrangement of 5 accelerometers was attached to the flexor carpi radialis 
muscle of 12 able-bodied participants; a reference accelerometer was located over the 
muscle belly, two peripheral accelerometers were positioned along the muscle's transverse 
axis and two more were aligned to the muscle's longitudinal axis. Participants performed 
three classes of muscle activity: wrist flexion, wrist extension and semi-pronation. A 
collection of time, frequency and time-frequency features were considered and reduced 
by genetic feature selection. The classifier, trained using features from the reference 
accelerometer, was tested with signals from the longitudinally and transversally displaced 
accelerometers.

Results: Classification degradation due to accelerometer displacement was significant for 
all participants, and showed no consistent trend with the direction of displacement. 
Further, the displaced accelerometer signals showed task-dependent de-correlations with 
respect to the reference accelerometer.

Conclusions: These results indicate that MMG signal features vary with spatial location and 
that accelerometer displacements of only 1-2 cm cause sufficient feature drift to 
significantly diminish classification accuracy. This finding emphasizes the importance of 
consistent sensor placement between MMG classifier training and deployment for 
accurate control of switching interfaces.

I. Background
The mechanomyogram (MMG) is the superficial vibratory signal measured from contract-
ing muscles. MMG is generated from gross lateral movement of the muscle at the initiation
of a contraction, smaller subsequent lateral oscillations at the resonant frequency of the
muscle, and dimensional changes of active muscle fibers [1-3]. The interference MMG sig-
nal is a compound signal in which active muscle fibre twitches may be summated linearly or
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non-linearly [4], and is considered an indicator of the activity of individual motor units
during voluntary isometric contraction [5]. The MMG signal reflects motor unit recruit-
ment [6], is affected by motor unit fusion [7], and is considered to be a qualitative indica-
tor of the global motor unit firing rate [8]. MMG is measured by microphones [9],
piezoelectric contact sensors [10,11], accelerometers [12] or laser distance sensors [13]
on the surface of the skin. As the mechanical index of muscle contraction, MMG has
been used to study muscle pain [14], muscle fatigue [7,15] and paediatric muscle disease
[16]. Recently, MMG has been investigated as a control signal for muscle-driven switch-
ing interfaces for applications such as powered upper-limb prostheses [17,18], and alter-
native access technologies [19,20].

In an early investigation of MMG as a control signal for upper-limb prostheses, Barry
et. al [21] used the amplitude of the MMG signal recorded from the belly of a single fore-
arm muscle (wrist flexor or extensor) for tri-state control (flex, extend, rest) of a pros-
thetic hand. The study suggested that the MMG signal was qualitatively less sensitive to
placement on the muscle than electromyography (EMG), and therefore suggested that
MMG should be less sensitive to small displacements of the sensor. In recent studies on
MMG-driven control, the control state has been identified by classifying MMG signal
features recorded from multiple muscle sites [17,20]. As in the case of EMG control
[22,23], pattern-recognition-based MMG control assumes that patterns of muscle activ-
ity associated with a state of muscle activation are reflected in MMG signal features that
are differentiable among different muscle activations states, and repeatable for a given
muscle activation state. Each MMG sensor provides localized information about the
activity of the underlying muscles, and may be affected by crosstalk due to transversely
radiated vibrations [24]. While a measureable MMG signal may be detected both proxi-
mal and distal to the muscle belly, the signal features may not have uniform spatial distri-
butions [25-27], thereby affecting the performance of pattern classifiers trained with
multi-dimensional feature sets derived from one specific location or sensor configura-
tion. The purported advantage of MMG robustness to sensor placement therefore needs
to be re-investigated in a pattern recognition paradigm. A degradation of classification
accuracy due to variations in sensor placement would have implications for the design,
training and practicality of multifunction MMG switching interfaces.

The amplitude of the MMG signal is known to reach its maximum at the muscle belly
and decrease towards the tendon insertions [2,28,29]. Wave propagation theory would
suggest that sound waves propagate in all directions away from the source, filtered by
soft tissue, thus producing a time-dependent spatial distribution at the surface of the
muscle. Multi-channel MMG signals exhibit in-phase vibrations along the longitudinal
axis of the muscle fiber and diminished, phase-shifted vibrations transverse to the fiber
direction [24,28]. When monitored with a two-dimensional grid of accelerometers, tem-
poral and spectral features of MMG signals elicited during single motor unit activity
show substantial spatial dependencies on the muscle surface [26]. The interference
MMG signal during voluntary muscle contraction, however, may not always exhibit the
spatial dependency of signal features seen during single motor unit activity [30], possibly
due to uniform activation maps generated by the summation of heterogeneous activity of
multiple motor units [25].

In a pattern recognition-based control framework, a significant spatial dependency of
MMG signal features during voluntary contraction would result in a drift in the classifier
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boundaries in the feature space when the transducer's position is perturbed, thus result-
ing in a degradation of classification accuracy. However, if the signal features show only
weak spatial dependencies, the features may be robust to position variation and thus
retain the discriminatory information among multiple classes of muscle activity. The
effect of spatial perturbations is dependent on a number of factors, such as the muscle
architecture [31], the choice of features [30], feature dimensionality, the number of target
classes, and the choice of classifier.

In this study, we test the effect of changes in accelerometer location in a single-site, tri-
state classification paradigm. This study attempts to emulate the performance of an
MMG classifier trained with the accelerometer in one location and then deployed in a
slightly different location. MMG signals were simultaneously recorded by accelerome-
ters located at, and radial to, the belly of the flexor carpi radialis muscle while partici-
pants held their hand in the extended, flexed, and semi-pronated positions. The
classifier, trained using features from the reference accelerometer (located over the mus-
cle belly) to maximize three-class classification accuracy, was tested with features from
the longitudinally and transversely displaced accelerometers. The emphasis of this study
is not the classification method per se, but rather the effect of accelerometer displace-
ments in a typical MMG signal classification paradigm. A single MMG channel is there-
fore used instead of the added information and higher classification accuracy afforded by
monitoring multiple muscle sites [20].

II. Methods
A. Participants
A convenience sample of twelve able-bodied individuals (4 male), aged 23.5 ± 4 years,
provided written consent to participate in the study. Participants were healthy, had intact
forearm musculature, and no previous history of musculoskeletal illness. The experi-
mental protocol was approved by the research ethics boards at Bloorview Kids Rehab
(#08-056) and University of Toronto, and was in compliance with the Helsinki Declara-
tion and Canada's Tri-council Policy statement on ethical conduct for research involving
humans.
B. Experimental equipment
MMG signals were detected with five uniaxial accelerometers (BU-7135 Knowles Acous-
tics low-frequency response accelerometer, sensitivity 28 mV/g, linear 2 Hz - 1 kHz,
weight 0.28 gm, size 8 × 5.5 × 2 mm). A custom terminal box was built to amplify the
accelerometer signals (AMP04, Analog Devices, gain ≈ 100) and interface the accelerom-
eters with a terminal block (National Instruments, BNC-2095). Vibrations of known
amplitude were applied to each accelerometer-amplifier assembly via a mechanical
shaker (Modal Shop, K2007E01) to ensure uniform gain across all MMG sensors. The
MMG signals from the terminal block were channelled through an analog signal condi-
tioning input module (National Instruments, SCXI-1102C), sampled at a rate of 1 KHz
(National Instruments, PXI-6052E, 16-bit, ± 5V), and the digitized signals were stored
on the controller's hard drive. A custom LabView graphical user interface with a manual
trigger was used to start data acquisition and visually cue participants to perform wrist
flexions, wrist extensions, and rest (hand held in the semi-prone position).
C. Experiment Protocol
Participants were instructed not to perform fatiguing upper-limb exercise twenty-four
hours before the trials. The five accelerometers were attached to the skin overlying the
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flexor carpi radialis (FCR) muscle using 3M™ polyester medical tape. Each accelerome-
ter's sensitive axis was perpendicular to the skin surface. As shown in Figure 1, a refer-
ence accelerometer, A3, was positioned at the muscle belly while peripheral
accelerometers A1 and A5 were situated along the longitudinal axis of the muscle, and
peripheral accelerometers A2 and A4 were secured along the transverse axis. The muscle
belly and the longitudinal axis were estimated by palpating the muscle and referencing
anatomical landmarks, i.e., the medial epicondyle of the humerus and base of metacar-
pals [32]. Participants were seated on a chair fitted with a custom arm-rest with u-
shaped groves that stabilised the forearm and supported the wrist and elbow. A tri-axis
accelerometer (MMA7260Q, Freescale Semiconductor) was affixed to the participant's
hand solely for the determination of hand movement times. MMG data were simultane-
ously recorded from accelerometers A1 to A5 in five trials. In each trial, participants
were cued to perform 20 repetitions of a target activity sequence, namely, rest - flexion -
rest - extension, where each activity was maintained for 3 seconds.
D. Signal pre-processing
Accelerometer signals were band-pass filtered with a 5th order Butterworth filter with a
pass-band of 5-50 Hz. The low cut-off attenuates the effects of movement [33], while the
high cut-off attenuates any noise beyond the accepted MMG signal range. The continu-
ous data streams were spliced into non-overlapping epochs of 256 ms. The known tim-
ing of the target activity sequence, together with the timing of the actual hand
movements determined by the tri-axis accelerometer, were used to categorize each
epoch into one of three classes: rest, flexion and extension.
E. Correlation between the reference and peripheral accelerometer signals
The cross-correlation function is a measure of the similarity between two signals as a
function of the time displacement between them. For two signals xi and xj, the normal-
ized cross-correlation function is given by:

Figure 1 Schematic representation of the accelerometer locations for MMG recordings.
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where N is the common signal length, k is the lag i.e. -N <k <N, k  Z, and e is the
energy of the signal, evaluated by

Ri,j can assume values between [-1, 1], with values close to 1 indicating strong similar-
ity.

We computed the pair-wise cross-correlations at k = 0 between the reference signal x3

and the signals x1, x2, x4, x5, recorded from accelerometers A1, A2, A4, A5, respectively.
F. Feature selection
In [20], we proposed an MMG pattern recognition scheme where discriminatory signal
features, selected using a genetic algorithm (GA), were classified using a linear discrimi-
nant analysis (LDA) classifier. In this study, a similar method was used to determine dis-
criminatory features from a single MMG channel.

A comprehensive set of 70 features were extracted from representations of the acceler-
ometer signals in the time, frequency and time-frequency domains. These features
included: 1RMS; 2signal memory [34]; 3mean of absolute amplitude difference;
4waveform length; 5Wilson's amplitude [35]; 6slope-sign change; 7-11relative energy rela-
tive energy contribution from five wavelet decomposition levels [36]; 12-18seventh-order
auto-regressive (AR) coefficients; 19-25cepstral coefficients derived from the AR coeffi-
cients [37]; 26log of RMS [38], 27median, 28mean of absolute value, 29mean absolute devi-
ation; 30entropy rate [36], 31normality, 32the stationary test statistic [20]; 33number of
zero crossings, 34minimum and 35maximum displacements of the time-domain signal;
36,37mean, 38,39variance, 40,41inter-quartile range, 42,43skew, 44,45kurtosis and
46,47dispersion ratio of the signal and its power spectrum; 48,49peak and 50,51median fre-
quencies and power at these frequencies; 52 ratio of signal power in the 3-15 Hz range to
that in the 15-50 Hz range; and 53-70the energy in each of three equal segments of details
and approximation, evaluated from the five-level discrete wavelet decomposition of the
signal. Subsets of these features have been used for classification of MMG [20] and other
physiological signals [35,36,39].

The GA sought participant-specific subsets of D = 12 discriminatory features using
data from the reference accelerometer, A3, recorded in the first trial only. In a previous
MMG classification study, D ≥ 10 was recommended for adequate signal classification
[20]. The optimization criterion for the GA search was the average three-class classifica-
tion accuracy with an LDA classifier. Using the GA-recommended subsets of features, a
subset of 25 features common to all participants, labelled 1-25 above, were selected for
MMG classification.
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G. Classification
1) Linear discriminant analysis
Let Q represent the number of classes and Nq the number of samples in the qth class, with

q = 1,...,Q. Consider the M-dimensional feature vector , derived from the ith

sample of the qth class, where i = 1,...,Nq. The sample class covariance matrix  is given
by

where  is the mean vector of class q. The pooled within-class scatter

matrix is,

where pq is the a priori probability of class q. The between-class scatter matrix mea-
sures the dispersion of the class mean vectors about the overall mean vector, and is given
by,

where  is the expected vector of the mixture distribution.

LDA projects the feature vectors  onto a lower dimensional space, , D
<< M, using a linear transformation ΘMxD which maximizes the ratio of the between-

class scatter matrix Sb to the pooled within-class scatter matrix Sw. Let  denote the ith

projected feature vector, from the qth class. The action of LDA can be compactly written
as,

where W and V are matrices formed by horizontally stacking the feature vectors 

and , respectively, for all samples i. It can be shown that the optimal projection
matrix Θ* is the one whose columns are the eigenvectors corresponding to the D largest
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eigenvalues of the eigenvalue decomposition of SW -1 SB [40]. As long as D ≥ Q-1, no
information is lost when the classes are normally distributed [41]. In this study, the

dimensionality of the feature vectors  was reduced to  by LDA pro-
jections.
2) Centre-trained classifier
In each trial, the data from the reference accelerometer, A3, were separated into a train-
ing set and a test set using five-fold cross validation. The training set was used to evalu-
ate the optimal LDA projection matrix, Θ*, and train a Bayesian LDA classifier to
discriminate among the three classes. This type of training will be termed the "centre-
trained" approach given the central location of the reference accelerometer. The test data
for each fold f of each of the five experimental trials s (see Section II.C) were projected by
Θ* and classified to generate the classification accuracy for the reference sensor, C3(s, f).

The centre-trained classifier was also was tested separately with MMG signals from
each peripheral sensor. This evaluation generated classification accuracies,Ci(s, f), for
sensors i {1,2,4,5}, trials s {1,...,5}, and cross-validation folds f {1,...,5}. In each case, the
projection matrix Θ* and the classifier boundaries were determined using the training
data from A3. For each participant, the test accuracies for each accelerometer were
pooled across the trials and cross-validation folds, and the distributions of classification
accuracies for each accelerometer were compared to that of the reference sensor, i.e., C3,
using rank-sum tests with. α = 0.05 In addition, the change in classification accuracy,
ΔCi,3, from the reference (A3) to the ith peripheral accelerometer in a given trial and fold
was determined as

3) Group-trained classifier
Hargrove et al. [42] proposed that EMG classifiers trained with exemplars of signals
recorded at possible displaced locations may mitigate the effect of electrode displace-
ments. To investigate the potential of this approach to benefit single-site MMG classifi-
cation, a 'group training' method was also implemented. In this case, the training and
testing data consisted of subsets of signals from all five accelerometers. The distributions
of classification accuracies for each accelerometer using the centre-trained and group-
trained methods were compared using rank-sum tests with a significance level α = 0.05.
4) Locally-trained classifier
Theoretically, the best performing classifier at a given recording site is one which is
trained and deployed with signals arising exclusively from the same site. To assess the
value of these 'locally-trained' classifiers [42], and thus, the ability of MMG data from
each muscle site to discriminate among multiple activity classes, five separate classifiers
were trained, one for each accelerometer location. Classification accuracies were esti-
mated at each site assuming a single-site classifier. Multiple rank-sum tests were used to
identify median classification accuracies that were different from that of accelerometer
A3, at a Bonferroni adjusted significance level of α = 0.0125.

III Results
The mean zero-lag cross-correlation between signals from the peripherally located
accelerometers (A1, A2, A4, and A5) and the signal from the reference accelerometer

Wi
q ∈ℜ25 Vi

q ∈ℜ2.

Δ ( ) = ( ) − ( )C s f C s f C s fi i, , , , .3 3 (8)
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(A3) ranged from 0.72 to 0.96. Substantial degradation in classification accuracy was
often seen despite high correlations between peripheral and reference signals, for exam-
ple, R4,3(0) = 0.94 and ΔC4,3 = 64% for participant 10. Conversely, minimal degradation
was observed in some instances of high correlation, for example, R5,3(0) = 0.81 and ΔC5,3

= 0.9%, again for participant 10. Table 1 summarizes the degradation in accuracy for
each peripheral sensor location, for each participant. While there was no consistent pat-
tern of degradation across sensor locations, the A5 location exhibited the mildest degra-
dation (approximately 2%) across participants. Corroborating the above remarks, we
observed that the class boundaries in feature space drifted non-systematically as the
accelerometer position was changed from the reference location, as exemplified in Fig-
ure 2.

There was an effect of contraction type on the cross-correlation between the reference
and peripheral sensors (Kruskal-Wallis test, p < 0.05). As an example, Figure 3 depicts
the distributions of the cross-correlation coefficients for different contractions and sen-
sor locations, for participant 4. Note the lower cross-correlation during flexion at all
peripheral sensor locations. This same pattern was observed in ten of the 12 partici-
pants.

Figure 4 shows the classification accuracies for each participant for the three classifier
training methods: centre-trained, group-trained and locally-trained. Unsurprisingly, the
locally trained classifiers generally exhibited the highest accuracies, followed by the
group-trained classifiers and finally the centre-trained classifiers with the lowest accura-
cies. The shaded circles indicate instances where the locally-trained classification accu-

Table 1: Degradation in classification accuracy across sensor positions

Participant Accuracy C3 (%) A1-A3 A2-A3 A4-A3 A5-A3

ΔC1,3 ΔC2,3 ΔC4,3 ΔC5,3

1 69.8 ± 4.3 7.5 ± 4 6.5 ± 4 6.8 ± 3 1.9 ± 3

2 71.0 ± 5.9 4.0 ± 4 6.9 ± 5 1.5 ± 5 2.0 ± 4

3 69.6 ± 4.5 5.7 ± 4 6.6 ± 4 7.7 ± 5 7.4 ± 5

4 74.6 ± 2.7 11.4 ± 4 4.7 ± 4 10.0 ± 7.5 ± 4

5 75.1 ± 4.2 11.8 ± 4 12.9 ± 4 1.7 ± 3 4.5 ± 4

6 69.1 ± 3.9 7.2 ± 5 5.7 ± 4 9.1 ± 5 1.5 ± 4

7 76.2 ± 4.3 14.9 ± 3 17.4 ± 3 4.6 ± 5 2.1 ± 4

8 71.2 ± 4.4 2.0 ± 3 0.8 ± 2 11.1 ± 5 3.6 ± 5

9 73.1 ± 3.0 5.9 ± 3 5.6 ± 3 7.2 ± 4 1.0 ± 3

10 76.4 ± 3.4 7.7 ± 4 1.0 ± 4 6.4 ± 3 0.9 ± 3

11 76.8 ± 3.0 1.4 ± 3 1.7 ± 2 4.9 ± 3 1.7 ± 3

12 69.7 ± 3.9 14.1 ± 5 12.2 ± 2 4.6 ± 3 4.9 ± 3

Avg 72.7 ± 0.6 7.8 ± 5 6.8 ± 6 6.3 ± 4 3.0 ± 4

Values shown are mean ± standard deviation across all trials. Bold and italic values indicate that Ci and 
C3 are significantly different (p < 0.05). Italic values indicate that the accuracy of the locally-trained 
classifier at this location was lower than that of A3, suggesting that this recording site yields signals that 
poorly reflect FCR activity.
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racy at a particular site was statistically different from that of A3. In some instances, the
locally trained classifier at a peripheral site performed more poorly than A3 (e.g., sensor
A2 and A4 for Participant 4), suggesting that certain sites are inherently less suited to
reflect flexor activity. On average, sensors A3 and A5, both situated along the longitudi-
nal axis of the muscle, showed the highest locally-trained classification accuracies. The
shaded squares in Figure 4 indicate instances where group-trained classification accura-
cies were statistically different from the centre-trained accuracies, thus demonstrating
the potential benefit of training the MMG classifier with exemplars from displaced loca-
tions.

IV. Discussion
Spatial dependencies of temporal and spectral MMG features have been previously
noted but not systematically quantified in terms of their impact on classification [25-
27,29]. From Table 1 and Figure 4, it is evident that the accuracy of centre-trained MMG
pattern classifiers usually degrades when the accelerometers are displaced from the loca-
tion over which the classifier was trained, suggesting that signal features representing
different muscle activity states have drifted (e.g., Figure 2), thus weakening the efficacy of
the original classification boundaries. This lack of spatial robustness is due to the fact
that the centre-trained classifier has no internal representation of signals from other spa-
tial sites.

Figure 2 Effect of accelerometer location on inter-class separation. The ellipses depict the boundaries 
within which 95% of the LDA-projected features lie. The projection matrix was optimized for separability using 
MMG signals recorded from A3. Note the increased overlap among classes once the accelerometer is posi-
tioned away from the reference location, A3. Data are shown for participant 4, trial 1.
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Once the classifier is exposed to signals from other sites during training as in the group
training scenario, greater robustness to displacement was observed. In this case, the clas-
sifier has an opportunity to form a shared internal representation of signals from all sites
during training. The improved accuracy suggests that group-training may practically
mitigate some of the negative effects of accelerometer displacement. Finally, in the local
training paradigm, multiple classifiers are created, each with a dedicated representation
of signals from a specific muscle site. Given that these location-specific classifiers were
only exposed to signals from their own location, accuracies exceeded those of group and
centre-trained classifiers. However, from a practical standpoint, this approach incurs the
greatest representational cost.

In a traditional pattern-recognition framework, multiple muscle sites are typically
probed [17,20]. For example, using the same experimental protocol, when the data set
included features simultaneously extracted from the FCR muscle (accelerometer A3) and
the belly of the extensor carpi radialis longus (ECRL) muscle, the average classification
accuracy was 91 ± 3% (3 classes, continuous classification). Nonetheless, we elected to
focus on a single-site tri-state classification paradigm to ensure an observable effect of
accelerometer position on classification. The classification accuracy was modest when
trained with signals from a single-site (≈73% for 3 classes, continuous classification) and
thus the classifiers would likely be susceptible to changes in accelerometer placement.
Likewise, in studies of EMG-based control, classifier degradation due to displacements
were more pronounced when fewer muscle sites were used [43,44].

The FCR muscle is a long fusiform muscle [32] with an expanded belly and the muscle
fibres arranged more or less parallel to each other and the long axis of the muscle. The

Figure 3 Typical distributions of the zero-lag cross-correlation between the reference (A3) and periph-
eral sensor locations (A1, A2, A4 and A5) as a function of muscle activation class. Data are shown for par-
ticipant 4, pooled across all trials.
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mechanomyogram is known to show in-phase vibrations along the longitudinal axis of
the muscle fiber, and a decrease in amplitude and changes in phase transverse to the
fiber direction [24,28]. We therefore expected that classification accuracy would be less
affected by displacements along the longitudinal axis [26]. This was not apparent for all
participants, perhaps due to limitations in approximating the long axis of the muscle. In
addition, the correlation coefficients along the longitudinal axis (R1,3 and R5,3) were gen-
erally not higher than those along the transverse axis (R2,3 and R4,3). Accuracy degrada-
tion, however, was lowest for A5 - a site along the muscle axis but closer to the tendon.

The cross-correlation coefficient, a measure of temporal similarity, was not always a
good predictor of the effect of displacements on classification accuracy. Like many bio-
signals (eg., electromyograms [45], electroencephalograms [46]), MMG may exhibit

Figure 4 Classification accuracy for each participant as a function of accelerometer location and train-
ing method. The shaded squares denote group-trained accuracies that are significantly different from those 
obtained for the centre-trained classifier. The shaded circles denote locally-trained accuracies that are signifi-
cantly different from that of A3.
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non-linearities [47]. While interdependence among the signals may be better analysed
with information theoretic cross-entropy measures [48], non-linear analyses are
deferred for future studies. It is interesting to note that, for most participants, the cross-
correlation between A3 and the peripherally located sensors was lowest during flexion
(Figure 3). During voluntary contraction, the mechanical activities of motor units are
asynchronous, and motor units fire at different rates [4]. MMG signal features, such as
peak-to-peak value, are dependent on the location of the active motor unit with respect
to the accelerometer position [25]. These asynchronous localized increases in motor unit
activities of the FCR during flexion likely caused the accelerometer signals to de-corre-
late. This has two important implications for pattern recognition of MMG. First, some
classes of muscle activity may be more affected by accelerometer displacements than
others. The activity class for which the muscle under consideration serves as the main
driver appears to be most gravely affected. Second, because of the task-specific depen-
dence, multi-site cross-correlation coefficients may themselves serve as discriminatory
features for multifunction classification.

As seen in the distribution of accuracies for the locally trained classifiers (Figure 4),
some sites around the FCR were occasionally more discriminatory than others. During
single motor-unit activation, the muscle generates acceleration waves that propagate
transversely over long distances [24]. The MMG signal is not specific to the activity of
the underlying muscle when several muscles are collectively active. The amount of cross
talk, and hence, classification accuracy at each site, may be dependent on its proximity to
other forearm muscles that assist with wrist flexion, extension and semi-pronation (rest).

While accelerometers are the most commonly used transducer for MMG recording,
MMG may also be recorded by microphones [9,49,50], piezoelectric contact sensors
[10,11] and laser distance sensors [13]. A number of studies have compared the different
transducers for detecting MMG [11,50,51]. Each transducer, though measuring the same
phenomenon, may have signals with different physical units, may introduce different
loading pressure and mechanical discontinuities on the skin, and may have different sen-
sitivities to muscle vibrations and motion artefact. Further, the area in contact with the
skin, or, for non-contact laser sensors, the area investigated by each transducer differs.
Consequently, the transducer used to record MMG may have implications for the signal
features used for classification, the spatial dependencies of the features, and the effect of
transducer displacements on classification accuracy.

The extent of classification degradation due to sensor displacements is likely influ-
enced by a number of factors, such as the number of muscle sites from which signals are
acquired, the number of target classes, selected signal features, complexity of the classifi-
ers, training method employed, muscle architecture, and the transducer used to record
MMG. Our results suggest that it is worthwhile to carefully consider sensor attachment
gear which may offer consistent placement of the sensor on the skin surface when
designing multifunction MMG switching interfaces.

V. Conclusion
Single-site forearm MMG signal feature values vary non-systematically with spatial loca-
tion. Accelerometer displacements of only 1-2 cm from the site providing training data
can cause sufficient feature drift to significantly diminish classification accuracy. This
finding emphasizes the importance of consistent sensor placement between MMG clas-
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sifier training and deployment for accurate control of MMG switching interfaces. Classi-
fier training strategies which involve MMG signals from several displaced locations may
enhance classifier robustness to variations in sensor position.
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