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Abstract

Background: Myoelectric control of a robotic manipulator may be disturbed by failures due to
disconnected electrodes, interface impedance changes caused by movements, problems in the
recording channel and other various noise sources. To correct these problems, this paper presents
two fusing techniques, Variance Weighted Average (VWA) and Decentralized Kalman Filter (DKF),
both based on the myoelectric signal variance as selecting criterion.

Methods: Tested in five volunteers, a redundant arrangement was obtained with two pairs of
electrodes for each recording channel. The myoelectric signals were electronically amplified,
filtered and digitalized, while the processing, fusion algorithms and control were implemented in a
personal computer under MATLAB® environment and in a Digital Signal Processor (DSP). The
experiments used an industrial robotic manipulator BOSCH SR-800, type SCARA, with four
degrees of freedom; however, only the first joint was used to move the end effector to a desired
position, the latter obtained as proportional to the EMG amplitude.

Results: Several trials, including disconnecting and reconnecting one electrode and disturbing the
signal with synthetic noise, were performed to test the fusion techniques. The results given by
VWA and DKF were transformed into joint coordinates and used as command signals to the
robotic arm. Even though the resultant signal was not exact, the failure was ignored and the joint
reference signal never exceeded the workspace limits.

Conclusion: The fault robustness and safety characteristics of a myoelectric controlled
manipulator system were substantially improved. The proposed scheme prevents potential risks
for the operator, the equipment and the environment. Both algorithms showed efficient behavior.
This outline could be applied to myoelectric control of prosthesis, or assistive manipulators to
better assure the system functionality when electrode faults or noisy environment are present.
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Background

Teleoperation of robotic devices for rehabilitation and
assistive tasks has increased in later years due, in part, to
the introduction of simple interfaces with the ability of
discerning the operator's intent [1]. Surface electromyog-
raphy (EMG) represents an efficient signal for control pur-
poses. Furthermore, the operator's movement is not
perturbed by the surface electrodes, allowing an easier
adaptation to assistive devices.

The high gain amplification required due to the low level
of EMG signals makes myoelectric control rather sensitive
to amplitude changes. Such variations can lead to difficul-
ties because the controller might receive incompatible val-
ues with the robot specifications, i.e., the mechanical
articulations may be subjected to displacements or veloc-
ities larger than the recommended ranges, which, in turn,
lead to the activation of the robot's protection system.

Typical failures in the case of bioelectric potentials are
broken electrode connections or sudden changes in the
electrode-electrolyte interface due, for example, to the
operator's movements or poor contact, which lead to
direct input of noise into the control system. Besides, in
the situation herein described, some noise is added by the
robot power supplies. If all of the above-mentioned
potential failures are not properly considered, they may
result in damages to the system, the user or even to third
parties.

Robots used, say, in service and rehabilitation of the aged
or people with disabilities, execute tasks in cooperation
with other humans, so that safety considerations are
needed. In order to avoid any possible operator's injury,
and/or the activation of the robot safety system, various
strategies have been proposed in the literature. The
method proposed by Kulic [2] is based on the trajectory
planning with the inclusion of the operator's position; in
Fukuda et al [3], instead, entropy appears as good risk
indicator of an incorrect or ambiguous command, that is,
when the entropy goes beyond a specified threshold level
the robot motors stop. In another approach, Fleischer [4]
introduces a soft manipulator with a flexible joint com-
posed of an electro-rheological fluid and a torque control-
ler considering human pain tolerance. To assure safety of
an exoskeleton for the knee joint support, in [5] all sensor
data are range-checked and clipped to sensitive bounda-
ries by software, besides other mechanical considerations.

All safety considerations mentioned above prevent
human risks by different methods, like stopping the
motors or including the operator's position data. The aim
of this work is to guarantee the correct and continuous
functioning of the system, even in case of failures. For this
purpose, two data fusion strategies are proposed, Variance
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Weighted Average (VWA) and Decentralized Kalman Fil-
ter (DKF) [6], by means of an arrangement of redundant
potentials, that is, combining the EMG signals from two
or more acquisition channels in such a way that after the
fusion stage, the algorithms provide a more reliable signal
to be applied to the control system.

Data fusion techniques are frequently implemented in
robotic control, where the information is redundant and/
or of diverse nature [7,8]. When the data sensors are sim-
ilar, fusion is applied over the signals, but when the data
sensors are of different nature, fusion takes place on the
control signals [8]. In this application, the interested vari-
ables are measured by two or more pairs of electrodes to
obtain more information than from a single channel. The
sensors (electrodes) differ only in their location and not
in their characteristics, and their signals are fused to
reduce the sensitivity of the control system relative to elec-
trode failures, so increasing the overall robustness.

The paper is organized as follows: Methods-A presents the
system and processing overview. The methodology of
acquisition and robot control is discussed in Methods-B
and the algorithms for data fusion in Methods-C. In
Results, Section A, the two fusion techniques are applied
to EMG signals in the presence of failures while a compar-
ative performance under simulated noise conditions is
given in Section B. Finally, in the Discussion, the merits
and limitations of these algorithms are discussed.

Methods

Equipment and processing

All the experiments were performed on an industrial
robotic manipulator BOSCH SR-800, type SCARA (Selec-

Electrode
pair 1

Electrode
pair 2

Figure |

Experimental set-up used for data acquisition. (Left)
BOSCH SR-800. The circles indicate the joints of the robot.
Joint | is the used in the experiments; (Right) Amputee vol-
unteer with an arrangement of electrodes on his stump.
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tive Compliance Assembly Robot Arm), with four degrees of
freedom and a horizontal reach of 800 mm (Fig. 1). To
demonstrate the validity of the algorithms herein pro-
posed, only one degree of freedom was used, in this case
the first joint (shoulder). For parameter adjustment, the
sensor data acquisition and fusion algorithms were car-
ried out off-line in MATLAB-SIMULINK® (The Mathworks,
Natick, MA), while the real time control algorithms were
finally implemented in a Freescale® kit DSP56F801 pro-
grammed in C++°.

Following the recommendations of SENIAM protocol [9],
bipolar EMG's were recorded with a pair of Ag/AgCl elec-
trodes (3M RedDot) placed 20 mm apart. The longitudinal
axis of this pair was aligned, when possible (in amputees
such positioning may not be realized), along the muscle
fibers. An array of two or more identical pairs of electrodes
was placed in the volunteer's arm (Fig. 1).

Electronic amplification, optical isolation, and filtering
are implemented by a custom-made front-end signal con-
ditioning circuit with the following characteristics:

Amplification stage (AD620, Analog Devices®): Input
impedance: 10 MQ); Gain: 1000; Common Mode Rejec-
tion Ratio (CMRR): 120 dB.

Filter: 6th order Band-Pass Filter with cuttoff frequencies
10-500 Hz and Butterworth Coefficients

Thereafter, the analogue EMG signals were digitalized at a
sampling rate of 1 KHz with an A/D 6024-E board
(National Instruments®) and processed according to Table
1 under MATLAB® as preliminary stage. In the end, the real
time system was implemented in a DSP kit (DSP56F801,
FREESCALE?) [10].

Even when the relationship between EMG amplitude and
muscular force is controversial, some features are accepted
as estimators in myoelectric control, especially in
amputees, due to the impractical measure of the muscle
force [11]. Several factors, like electrode location, intere-
lectrode distance, subcutaneous fat layer thickness, make
it impossible to consider a generalization of the EMG-

Table I: Sequence of operators applied to EMG signal.
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force relation in different subjects and experimental ses-
sions [12]. Nevertheless, in the initial setting stage, the
system records the maximum voluntary contraction
(MVC) and the background noise applying the same pro-
cedure described in Table 1. Hence, these values were cal-
culated over the rectified and smoothed signals.
Afterwards, with this information, the system executes an
adaptive routine for the current environmental conditions
and for the specific characteristics of each volunteer. Fur-
thermore, the relation between the muscle force and the
command for the robot control was obtained from pairs
of agonist-antagonist muscles. This is because the opera-
tor was trained based on the functional muscle group,
which reduces the influence of each individual muscle.

The EMG often shows slow variations due to movement
artifacts and instability of the electrode-skin interface,
therefore, a sixth order Butterworth band-pass filter was
implemented. It removed low frequency components
(below 10 Hz) and limited the EMG bandwidth below
500 Hz to prevent high frequency noise amplification.
Thereafter, the signal was full-wave rectified and normal-
ized with respect to the MVC. Finally, the background
noise was removed by applying a symmetric dead-zone
operator; this is done to eliminate the arm drift caused by
the cumulative effects of the background noise after full-
wave rectification. Figure 2 and Table 1 summarize the
processing steps of the raw EMG.

Regarding the rejection of the noise generated by the
power source, the use of notch filters is not recommended
in EMG applications because they introduce phase rota-
tion and remove a frequency band, precisely where this
signal shows an important power density [12]. The high
CMRR of the differential amplifier (120 dB) improves
noise rejection.

EMG is presented as a time sequence, which must be
mapped to a smaller dimension vector by the computa-
tion of several features leading to a muscle force estimator
and input to the classifier. A wide spectrum of features can
be found in the literature, computed either in the time or
frequency domain, or both, as can be seen in [13] and the
references therein cited. Time domain features are widely

Filtering with a 6th order Butterworth Bandpass filter (10 Hz—500 Hz).

emgﬁlt(k) = ﬁlter (emgraw(k))

Normalization with respect to MVC

emg porm (k) = %

Full-wave rectification

emgrect(k) = Cle (emgnorm(k))

Background noise removing
Symmetric Dead Zone
BNT = Background Noise Threshold

emg(k) = DeadZone(emg,,,,(k)) = if abs (emg,,,.(k)) = BNT; emg(k) =
emg,.m(k) otherwise emg(k) = 0
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Figure 2

Processing scheme of the EMG signal. Full description can be found in Table I.

used due to computational simplicity and real-time con-
trol possibilities. For choosing the most adequate, the sta-
tistical set proposed by [14] was evaluated in terms of
computational cost and repeatability.

Since the EMG can be considered as a zero-mean stochas-
tic process, amplitude appears as proportional to the
standard deviation (STD) varying in time. Under this
assumption, Mean Absolute Value (MAV) and Root Mean
Square (RMS) were compared in [15] as maximum likeli-
hood estimators of the EMG amplitude (and, conse-
quently, EMG-muscle force relation). The previously
mentioned reference reports experimental evidence giving
a slightly better performance of MAV over RMS. MAV is
defined as in Zecca et al. [16],

k

MAV(R) = " abs (emg(j)) (1)

j=1

where emg(j) stands for the j-th sample from the begin-
ning of the experiment and k is the current sample. This
equation was modified to be applied in a recursive way,
that is, more suitable for real-time control, that is,

MAV (k) = % MAV(k—1) + %abs (emg(k)) ()

where k = 1,2,... corresponds to the sample time and
emg(k) is the myoelectric signal in each sampled time.

The muscle contraction amplitude is estimated through
MAV, which, in turn, is transformed to angular reference
(9,) for the controllers of the robot joint with a gain
adaptation, i.e.: q,;= 'MAV [Fig. 3]. A set of optical
encoders provide the joint's position (gq) for the error sig-
nal (fq(k)) calculation. The entire system was imple-
mented with two personal computers connected via the
TCP/IP protocol. The first computer acquires the EMG,
carries out the processing and calculates the coordinates
for the robot joints. The second computer commands the

robot with a Proportional Derivative (PD) control law
[17], where g](k) is the error signal and the output vq,,{k)

stands for the manipulator's joint velocity reference. The
robot reaches a position in the x-y plane according to the
reference of ¢,,(k). The information of the joint positions

and the direct kinematic equations was used to simulate
the trajectory on the x-y plane and test its behavior. In
addition, the volunteer performs a virtual training with a
3D simulator, seeing all robots' movements on a compu-
ter screen. The data are transmitted at a frequency of 1
KHz to prevent any incompatibility with the acquisition
stage. Figure 3 displays an overview of the entire system.

Methodology

Previous informed consent, biceps and triceps EMG sig-
nals were recorded during voluntary contractions in 4 nor-
mally limbed subjects (3 male, one female, 25 + 3 years
old) and one above elbow amputee (male, 24 years old).

After a period of rest, during which the background noise
was recorded, volunteers were instructed to perform a 1s
MVC with each muscle to be used in the normalization
stage. During the test, the subject was instructed to use this
pair of agonist-antagonist muscles to command the
manipulator and displace its end effector to the right and
left on the workspace. Both statics and dynamics contrac-
tions were tested while the type of contraction was chosen
by the user.

The decision criterion for planning the trajectory is the
sign obtained from the difference between MAV signals of
the biceps and the triceps, that is, sign(emgmen (k) -
emgamen(k)). The following (arbitrary) criterion was
adopted: a biceps contraction causes a rightward displace-
ment of the robotic arm, and the triceps contraction a dis-
placement to the left.

Algorithms

Two algorithms were proposed: Variance Weighted Aver-
age (VWA) and Decentralized Kalman Filter (DKF). Since
the EMG signal recorded during voluntary dynamic con-
tractions can be considered as a band-limited zero-mean
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Flowchart describing the proposed myoelectric control. Top, the classical scheme for a single channel. The Processing
stage correspond to Fig.2 and Table I, MAV block extracts an estimate of muscular force, which is transformed to joint coor-
dinates trough I'. Bottom, the proposed redundant arrangement. Two channels or acquisition are fused, providing a single

input signal to the MAYV estimator.

Gaussian process, modulated by muscle activity and cor-
rupted by a Gaussian additive white noise [18], its instan-
taneous changes of variance provide an indicator of
muscle activity as well as the presence of fault-induced
noise. For this reason, the variance was chosen as weight-
ing function.

In what follows, emg;(k) denotes the value of the EMG sig-

nal in channel i at the time of step k. With this value, the
recursive computation of the instantaneous temporal

mean (average) signal (%gi(k) (k) and the instantaneous
variance o*ezmgi (k) (k) was calculated for each sample time

k, that is,

emg; (1) = emg(k —1) +  ( emg;(k) - emg(k~1))
3)

2 2 1 P 2 2
02 (B) = 020 (0 =1) + %([emg,-(k) —emgi (1)~ 02 (=) )
(4)

VWA
In the first algorithm, a modified average was used, i.e.,

VWA(k) = w,(k)emg, (k)+w,(k)emg, (k) (5)
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where w, (k) and w,(k)stand for the signal weights, respec-
tively, and represent the normalized coefficients, which

are variable with the variance of the signals crezmgl(k) (k)

and O'jmgz (k) (k) in the time step k

% gy % gy
wl(k):az (k)+o 2 (k)'wz(k):c;2 (k)42 (k)
emgl emg2 emgl emg2
(6)

where both coefficients w, (k) and w, (k) satisfy the follow-
ing conditions,

0 =w,(k)w,y(k) =1
wy(k) +wy(k) =1

To clarify this concept, we give an analytical example, i.e.,

If 00,0, (k) > 02, (k) then VWA(k) = emg,

emg,
emg1+emgo

If 6 2g, (k) = 0 gg (k) then VWA(R) = 5

Qutputs
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DKF

Stochastic estimation tools such as the Kalman filter can
be used to combine or fuse information from different
media or sensors for hybrid systems. The Decentralized
Kalman Filter (DKF) generates the overall signal estimate
by minimizing the variances [6]. The DKF can be consid-
ered an algebraic equivalent of the Centralized Kalman
Filter (CKF). Theoretically, there is no performance loss in
the decentralized system, it delivers the same results as the
CKEF, but the benefits of the DKF are the modular concept
that allows to add more sensors to the system, as needed,
and an easier parallel implementation [18].

Figure 4 summarizes the concept of a DKF, where the local
filter outputs converge to the overall fusion filter via the
respective variance and the estimated local outputs. In
fact, as mentioned above, many local filters can be added
as needed, and always the data are fused at the final filter.

As in the previous algorithm, the instantaneous variance
is the decision parameter. Therefore, instantaneous mean
and variance must be recursively computed with equa-
tions (3) and (4), thereafter; these values are inserted in
the local filter (7). Finally, the vectors are fused in the
overall filter (8), according to the procedure described by
Soria et al. [7],

Local

PZ[C"C), emgeﬂ»‘. (k)

Local Pifc), emg,, (k) Global | Overall
Kalman > or estim ate
Filter 1 TS

Filter »

emg ., ()

Kalman
Filter 2

Figure 4

P(k"}): EINE ort (;C : 1)

>

Outline of a Decentralized Kalman Filter. Each local filter produce estimates emg,, (k) (k) and emg,, (k) (k) based on

the information available from emg, (k) and emg,(k) using the standard Kalman Filter equations. The Global Filter block fuses

these estimates together to form the overall state estimate emg,,(k).
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(k) =P (k=1) + (07)
emg o, (k) = P() ( P (I = )emg o (k =1) + (07) " emg,(k) )
(7)

n

P(k)=P\(k -1)+2

i=1

P (k) = Pk =1)

g (1) = P(k)[ P Vemg,, 1)+ 3 P (e (09— Pk~ Ve, (-1) ]
(8)

where i represents the local filter, n is the number of local
filters,P; stands for the local variance, emg, (k) (k) is the

filtered (estimated) signal, P represents the global vari-
ance, and emg,(k) describes the global estimated vector.
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Results

Analysis of both algorithms in the presence of failures
Several trials, all well-accepted by the volunteers, were
performed with this procedure. A representative experi-
ment carried out with one array of acquisition channels
(from the biceps) clearly shows the fusion results (Figs. 5
and 6). Even when the two signals were recorded from the
same muscle, their shapes and amplitudes were not iden-
tical, because of the different sensing sites. However, the
signal used to command the robot is the result of their
fusion, in such a way that differences were smoothed by
the averaging effect of the filter. The operator visual feed-
back of the manipulator minimizes any difference
between the signals from each pair and the global fusion
(see Fig. 3 and Fig. 6).

Once both algorithms were adjusted, they were experi-
mentally tested under several conditions, as for example,
disconnecting and reconnecting one electrode in an alter-
nating manner (a temporary electrode disconnection
leads to saturation of the amplification stage). The EMG
without perturbations (called noiseless channel) was con-

)
c
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o
=
O
o~
o)
o
c
©
N
O
c
2
7
=
L
%
c
S
w
3
TR
L
¥ ,
0 1 2 3 4 5 6 7 8 9 10 11
Time [sec]
Figure 5

Normalized EMG signals from biceps and results of the fusion for an arrangement of two bipolar electrodes, in

normal conditions.
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Joint Coordinates [rad]

0.8+
06F
0_4_ ....................................................................
0_2_ .........................
0 i :
0 1 2 3 4 5 6 7
Time [sec]

Figure 6

Joint coordinates movements as functions of time obtained from the signals of Fig. 5 and their fusion.

tinuously recorded as reference while the noisy signal was
introduced into the robot mathematical model to com-
pute the trajectory with failures. Both graphs were thereaf-
ter analyzed for evaluation purposes.

The resulting EMG after applying both algorithms is pre-
sented in Figure 7. In Channel 1, the electrode was discon-
nected and reconnected several times leading to
saturation, while in the second channel the noiseless sig-
nal remained with no changes. The third and fourth chan-
nels show the results of VWA and DKF fusions,
respectively. The results are not identical, but the transfor-
mation to robot control action is similar, as shown in Fig-
ure 8.

Figure 8 shows the results of fusion transformed into joint
coordinates from the electrode disconnection instant.
Both algorithms produced signal attenuation caused by
the averaging effect of VWA and the inherent filtering of
DKEF fusion. However, the inclusion of an amplification
stage could greatly mitigate this effect, but the result in sta-
tionary state, without failures, would be modified (see Fig.
6).

Even when the transformation of this signal to joint coor-
dinates is not exact, the failure is ignored by the control
system, and the joint reference signal never exceeded the
workspace limits. Under these circumstances, the elec-
trode disconnection can be detected by the operator and
therefore corrected.

Figure 9 displays the x-y trajectories for noisy (9-a), noise-
less (9-b), VWA and DFK fused signals (9-c and 9-d). The
path generated by the contaminated signal (first channel,
Fig.7) exceeded widely the robotic arm range; neverthe-
less, the commands coming from either VWA or DKF
fusion were kept inside the workspace limits, in accord-
ance with the joint coordinates of Figure 6.

In order to demonstrate the results in all volunteers, they
were instructed to perform two consecutive and similar
contractions while the electrode was removed in channel
2 during the second contraction. This procedure was
repeated five times with each volunteer. Under the
assumption that both contractions generate similar (or
quasi identical) joint coordinates, the result of fusion was
compared through the maximum absolute error between
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Figure 7

Fusion of EMG's. Top: Channel |, normalized biceps EMG saturated during disconnections. Second: Channel 2, normalized
noiseless signal. Third: Channel 3, Fusion signal from VWA. Bottom: Channel 4, Fusion signal from DKF. The DKF Fusion

presents an important attenuation.

the first coordinate value (noiseless contraction) and the
second, with electrode disconnection. The statistical anal-
ysis showed more dispersion in DKF than in VWA, even
when the error in both techniques was not significant
(Fig. 10).

Performance analysis under different noise conditions
The two fusion methods were evaluated by applying real
EMG signals, which had been separately corrupted with a
range of white noise and 50-Hz interference. In the first
case, we applied a stationary white noise, which has a
standard deviation depending on the noise level, while in
the second case, instead, we used different levels of power
line interference (0 to 10 V, in steps of 1 V). The power
line interference was simulated by a sinusoidal signal of
50 Hz with adjustable amplitude. For both algorithms,
the absolute error maximum of the generated noisy sig-
nals was computed with Equation 9. Results are summa-
rized in Table 2.

max abs error = max(abs(emg(k) - emg,,(k))

)

The procedure described in Section III-A was repeated in
all volunteers to compute the average of the absolute error
(i.e. infinity norm) for both methods. The maximum
absolute error for DKF Fusion was 1.6285 V (STD 0.13)
and for VWA was 0.3635 V (STD 0.47), in the group of
healthy subjects. The same calculation was made for the
amputee; in this case the error for DKF Fusion was 1.978
V and for VWA was 0.4275 V. There are no significant dif-
ferences, thus the performance is similar in both groups.

Discussion

The literature does not seem to be abundant in the use of
fusion for EMG signals. We could find the report by Silva
et al. [19] applying data fusion of mechanomyography
(MMG) signals for prosthesis control. These authors con-
cluded that a multisensor data fusion technique is used as
strategy for the generation of binary control signals for an
electrically powered prosthesis, none the less, this paper is
somewhat unclear in its results and is not well related to
the way we use it here.
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Figure 8
Joint coordinates for the EMG fusion from the moment of electrode disconnection. The dotted gray line marks the
physical limit of the robot. Beyond this limit, the safety mechanisms are activated.
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Planar trajectories for the signals of Fig. 7 and for results of Fig. 8.
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Statistical results of DKF Fusion. (See also Results Section-A).
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Table 2: Maximum absolute error (Eq.9) for both algorithms,
when the EMG signals were corrupted by Gaussian white noise,
and by power line interference.

Noise Level Gaussian white Noise 50 Hz Interference
[mV] VWA DKF VWA DKF
0,1 0,173 0,973 0,077 0,605
0,2 0,243 0,711 0,090 0,683
0,3 0,282 1,096 0,096 0,745
0,4 0,418 0,692 0,096 0,783
0,5 0,401 1,146 0,094 0,806
0,6 0,709 0,934 0,098 0,819
0,7 0,674 1,038 0,106 0,827
0,8 1,106 1,038 0,121 0,832
0,9 0,540 1,021 0,135 0,835
1,0 0,781 0,787 0,149 0,838

When the benefits of each algorithm are analyzed, as in
any robustness scheme, two aspects must be taken into
account: noise sensitivity and computational cost. On one
hand, VWA appears as more efficient due to its better sen-
sitivity to noisy signals, but the DKF algorithm is recom-
mended in fusion where the signals come from sensors
whose nature is different, like electrodes for electromyog-
raphy, piezoelectric contact for mechanomyography,
accelerometers for acceleromyography (AMG), and con-
denser microphones for phonomyography (PMG). On
the other hand, the computational cost for both algo-
rithms is the same, therefore, this is not a decision factor,
and the choice would depend on the expected perturba-
tions and the possibility of incorporating new sensors.

The use of redundant potentials is ultimately limited by
the practical possibility of sensing with two or more elec-
trodes on the same muscle group. However, this is not
always feasible in amputees because of the shape and
space availability on the stump area for attachment of sur-
face electrodes and the problem of adhesion.

The two proposed fusion algorithms, VWA and DKEF, have
demonstrated an efficient performance. Despite the fact
that both algorithms have shown different responses to
noise, the manipulator never moved beyond its safety
range. Moreover, the true system trajectories followed
closely the ideal trajectories generated with the robot
mathematical model. This outline could be applied to
myoelectric control of prosthesis, or assistive manipula-
tors in order to assure the functionality under electrode
faults and noisy environments.

Conclusion

Two data fusion algorithms of EMG signals are proposed
in this paper with the aim of improving the fault robust-
ness and safety characteristics of a myoelectric controlled

http://www.biomedical-engineering-online.com/content/8/1/5

manipulator system. The major advantages for this
scheme are: the continuous operation of the manipulator,
even in case of electrode disconnection, and the modular-
ity that offers the possibility to include different number
and types of sensors. The main contribution of the work
proposed here can be centered around two main issues.
First, the improvement of the robustness preventing
potential risks for the operator and the environment in
case of failure, tested under real and simulated noisy con-
ditions. Second, the fact that two simple data fusion algo-
rithms based on the instantaneous variance analysis and
without computational cost were applied to EMG.

The two algorithms used demonstrated an acceptable per-
formance.
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