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Abstract
Background: Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at
different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted
by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting
robust parameters from such signals, and providing confidences in the estimates is therefore difficult and
requires an adaptive filtering approach which accounts for artifact types.

Methods: Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram
(ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types
of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two
previously reported signal quality measures weighted together. One index measures morphological
normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using
our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR)
based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the
value of the SQI. In order to do this, we have created six novel models of different categories of artifacts
that we have identified in our ABP waveform data. These artifact models were then injected into clean
ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates
were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error
for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution
to provide estimates of expected errors given a single value of the SQI.

Results: Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and
mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive
than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that
our SQI can provide error bounds for both HR and ABP estimates.

Conclusion: The KF/SQI-fusion method described in this article was shown to provide an accurate
estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of
persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error
between artifact types, measurement sensors and the quality of the source signal can be factored into
physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures.
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Background
Arterial blood pressure (ABP) is a basic hemodynamic
parameter in intensive care unit (ICU) monitoring. ABP
waveforms are frequently corrupted by artifacts, such as
transducer flushing, catheter clotting, movement artifacts,
and non-invasive cuff inflations [1]. These errors cause
monitors to generate a high rate of false alarms. In fact,
ICU false alarm rates can be as high as 86% [2,3]. Various
strategies, such as median filtering [4], multi-parametric
analysis [5-7], machine learning [8-11] and signal quality
assessment techniques [12], are used to reduce false
alarms.

Multiple average observations of blood pressure increase
the accuracy of ABP estimates [13]. Therefore, a tracking
procedure based upon some memory of previous values,
that is not thrown off by individual errors should provide
a more accurate method of estimating ABP. Furthermore,
a system that can integrate an estimate of the quality of
each individual observation into each ABP estimate can
improve the overall ABP estimate further [12].

In this study we present extensions of our data fusion
framework [14,15] which uses a robust Kalman filter (KF)
and signal quality indices (SQI), for robust tracking of
systolic blood pressure (SBP), mean blood pressure
(MBP) and diastolic blood pressures (DBP) derived from
ABP waveforms. After preliminary beat detection based on
a localised slope in the low-pass filtered ABP signal [16],
the signal quality of the ABP waveform is calculated by a
combination of two previously developed SQI metrics,
one using heuristic amplitude and gradient thresholds
[17], and one using fuzzy representation and fuzzy rea-
soning [12]. Blood pressures are then estimated using a
KF, adjusted to include the signal quality estimates.

Methods
Data sources
For the evaluation of our algorithm, we chose more than
6000 hours of high quality data (as judged by a stringent
signal quality metric described in [12,17] and later in this
article) comprising simultaneous ECG and ABP signals,
from the Multi-Parameter Intelligent Monitoring for
Intensive Care II (MIMIC II) database [18]. The MIMIC II
database contains approximately 300,000 hours of bed-
side monitor waveform data from over 4,000 patients.
Since no database of real ABP noise exists, we invented a
series of ABP artifact simulation algorithms, and added
these realistic artificial artifacts to clean ABP signals to cre-
ate the evaluation data set.

Artificial ABP artifact generation algorithms
After extensive searches through the MIMIC II database,
we identified six generic phenomenological artifact types
similar to those described in [1]. These are: 1) rapid satu-

ration (over a period of 5 to 20 seconds) to some maximal
ABP, 2) rapid saturation to some ABP minimum, 3) rapid
saturation to the current mean ABP, 4) high amplitude
square wave artifact, 5) high frequency noise and 6)
highly transient impulse-like artifact. These artifacts are
now described in more detail, with visual examples, and
algorithms for generating realistic and variable artificial
representations of them [Matlab source code for generat-
ing these artifacts, see Additional File 1]. Although the
exact etiology of these artifact types is unknown, discus-
sions with clinical staff who are familiar with these abnor-
mal ABP waveform morphologies reveals that each artifact
type is likely to be caused by damping (from a blocked
arterial line), flushing of the arterial line (to reduce the
damping), pinching of the arterial line, body movements
or clinical activity or interventions. The resultant artifacts
are discussed below in more detail with the mathematical
definition of each artifact type.

1. Saturation to ABP maximum artifact (asmax)
This type of artifact (as seen in Figure 1a) manifests as a
rapid saturation from a normal ABP to a maximum value
(ABPmax), which is set to be equal to 200 mmHg ± 10
mmHg, with an exponential-like curve. We therefore use

Artifact 1, (asmax); Real (a) and simulated (b) ABP saturation to maximum pressure, defined by Eq. (1)Figure 1
Artifact 1, (asmax); Real (a) and simulated (b) ABP 
saturation to maximum pressure, defined by Eq. (1).
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the hyperbolic tangent function (tanh) to simulate this
behaviour as follows:

where η(0 <η ≤ 1) is the rate of saturation, Adias is the
diastolic ABP and fs is the sampling frequency of the ABP.
A large value of η therefore leads to a rapid saturation to
ABPmax. Examples of the real and artificial asmax artifact are
shown in Figures 1a and 1b respectively. This type of arti-
fact is likely due to the flushing of the arterial line, to
reduce damping caused by a blood clot or thrombosis of
the arterial line, for example.

2. Saturation to ABP minimum artifact (asmin)
This type of artifact (Figure 2) appears to be composed of
four consecutive parts: 1) a rapid exponential diastolic sat-
uration, 2) a rapid saturation from a normal ABP to a min-
imum value (ABPmin) with an exponential-like decay, 3)
an exponential increase from ABPmin to some ABP value,
and 4) a gradual transition back to the unaffected blood

pressure. An artifact boundary is created with these four
parts and then applied to the ABP. The upper boundary of
the first part of the artifact is the maximum of ABP in the
window, and the lower part is a right upside of a square
function with the independent variable altered from 0 to
2.5. The upper boundary of the second part (asmin_2) is
defined as:

And the lower part is obtained by decreasing asmin_2 to
90%. The upper boundary of the third and fourth part
(asmin_3) is defined as:

where N is the length of the third and fourth parts. The
lower third part is created by decreasing asmin_3 by 20% –
40% of its original value and the lower fourth part is the
left downside of a square function. An example of the real
and artificial asmin artifact is shown in Figures 2a and 2b
respectively. This type of artifact may be due to a transient
constriction in the arterial line such as pinching from arm
movement.

3. Reduced pulse pressure artifact (app)
This type of artifact is similar to the systolic and diastolic
ABP saturation artifact, gradually decreasing the pulse
pressure. We simulated this artifact by decrementing the
systolic ABP in a linear manner over a variable window
length. A lowpass FIR filter with a passband cutoff of 5 Hz
and a stopband cutoff of 10 Hz and a Kaiser window was
also applied. An example of the real and artificial app arti-
fact is shown in Figures 3a and 3b respectively. This type
of artifact can be due to damping caused by thrombus in
the arterial line.

4. Square wave artifact (asw)
This type of artifact consists of a series of square waves
with varying random duty cycles. Examples of the real and
artificial asw are shown in figure 4a and 4b. The length of
the square wave is determined by generating a uniform
random number distributed between 5 seconds and 20
seconds. This artifact simulates a fast flush test of the sen-
sor [1]. A fast flush test helps determine the natural fre-
quency and damping coefficient of the entire catheter
monitoring system to ensure accuracy and consistency of
the ABP measurement. Although a flush test is usually fol-
lowed by a rapid oscillation that quickly dies away, this
effect was not explicitly modeled here since it is brief and
relatively low amplitude compared to the square wave.
However, the addition of artifact type 6 (impulse artifact)

a n
n

fs
ABP A Adias diassmax max( , ) tanh( ) ( )η π η= ⋅ ⋅ ⋅ − +
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Artifact 2, (asmin); Real (a) and Simulated (b) ABP saturation to lowest pressure in window defined by Eq.s (2) and (3)Figure 2
Artifact 2, (asmin); Real (a) and Simulated (b) ABP 
saturation to lowest pressure in window defined by 
Eq.s (2) and (3).
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to the end of each square pulse would allow modeling of
this smaller effect.

5. High frequency artifact (ahf)
This type of artifact is simulated by a brown noise genera-
tor (produced by Brownian motion), implemented
through a 1/f2 bandpass filter. The brown noise was fur-
ther filtered using a Kaiser window FIR bandpass filter
with a passband between 1.5 Hz to 18 Hz. The resultant
signal was then added to the real ABP signals. Examples of
the real and artificial ahf are shown in figures 5a and 5b
respectively. High frequency noise can also be simulated
by differentiating the signal. This band-pass filtering phe-
nomenon may be related to movement artifact or distur-
bance of the transducer (such as dragging a cloth over the
arterial line).

6. Impulse artifact (aimp)
This type of artifact is simulated by the sinc function as
shown in Eq. (4). The central lobe of the sinc function was
used as aimp artifact and was added to the real ABP signals.
The impulse artifact is given by

where η(0.05 <η < 0.35) is the approximate percentage of
pulse that central lobe occupies, n defines the frequency at
which the sinc function oscillates, and NQ denotes selecting
the central lobe of the sinc function. An example of the
real and artificial aimp is shown in figures 6a and 6b respec-
tively. This type of artifact could be due to motion, or a
sharp mechanical artifact such as crimping of the tubing.
It should be noted that these artifacts can also be applied
to other biomedical signals such as the photoplethysmo-
gram although the exact frequency response of each arti-
fact and would require modification.

Signal quality assessment
Two previously developed ABP signal quality assessment
methods, wSQI [12] and jSQI [17] were combined to
derive the signal quality index of ABP. The wSQI algo-
rithm was designed to reduce the incidence of false ABP
alarms by rejecting low-quality ABP segments. The algo-
rithm consists of an open source ABP pulse onset detec-
tion routine, wabp [16], a waveform feature extraction

a n
n

f
n f

s
simp( , ) sin( ) ( / )η π

η
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Artifact 3, (app); Real (a) and Simulated (b) ABP reduced pulse pressure in window using a 5–10 Hz FIR filter plus Kai-ser windowFigure 3
Artifact 3, (app); Real (a) and Simulated (b) ABP 
reduced pulse pressure in window using a 5–10 Hz 
FIR filter plus Kaiser window.

Artifact 4, (asw); Real (a) and Simulated (b) ABP square wave artifactFigure 4
Artifact 4, (asw); Real (a) and Simulated (b) ABP 
square wave artifact.
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routine, a waveform feature fuzzy representation, and a
fuzzy reasoning procedure to produce the signal quality
index. ABP waveform feature extraction was performed on
a beat-by-beat basis. The waveform features used in this
algorithm were systolic blood pressure (SBP), diastolic
blood pressure (DBP), and mean blood pressure (MBP),
maximum positive pressure slope, maximum negative
pressure slope, maximum up-slope duration (the maxi-
mum duration over which the ABP signal can rise contin-
uously), maximum duration above threshold (the
maximum duration that the ABP signal stays above a pre-
defined threshold), pulse-to-pulse interval (T), pulse pres-
sure (the difference between the SBP and the DBP in a
beat) and ECG-ABP delay time (the interval between the
QRS onset in the ECG and the onset of the consequent
ABP pulse).

The wSQI algorithm was previously trained on data from
the MIMIC DB [19]. It was shown to give an accurate
assessment of ABP signal quality in previous studies [12]
with a sensitivity of 99.8% and a positive predictivity
(positive predictive value) of 99.3% for detecting true
blood pressure alarms and a sensitivity of 98.2% and a
positive predictivity of 99.4% for detecting false alarms. A

wSQI value is associated with each beat and possesses a
continuous value between 0 and 1 (bad to good). Values
for wSQI greater than 0.5 generally correspond to good
signal quality (sufficient for heart rate analysis) [12].

The jSQI algorithm is a binary abnormality index (with 0
indicating a normal beat type) and uses the same beat
detection algorithm as wSQI, after which features in each
ABP pulse are identified (see table 1). Plausible heuristic
constraints are set on the ABP amplitudes, slopes, and
beat-to-beat variations in order to generate a signal abnor-
mality index. The last column in table 1 lists these con-
straints. Note that for each beat, Pd and Ps are the local
minimum and maximum around the pressure onset
point. Pm is the average pressure between adjacent onsets.
T is the time difference between adjacent onsets. The first
5 criteria in Table 1 impose bounds on the physiologic
ranges of each feature. For example, any beat with a
diastolic pressure of less than 20 mmHg is flagged as
abnormal.

The sixth criterion in table 1 is the noise level, w, and is
defined as the average of all negative slopes in each beat.

Artifact 5, (ahf); Real (a) and Simulated (b) ABP high fre-quency artifact generated with band-limited (1.5 Hz to 18 Hz) 1/f2 noiseFigure 5
Artifact 5, (ahf); Real (a) and Simulated (b) ABP high 
frequency artifact generated with band-limited (1.5 
Hz to 18 Hz) 1/f2 noise.

Artifact 6, (aimp); Real (a) and Simulated (b) ABP impulse arte-fact using an adjustable sinc function (Eq. (4))Figure 6
Artifact 6, (aimp); Real (a) and Simulated (b) ABP 
impulse artefact using an adjustable sinc function 
(Eq. (4)).
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With high frequency noise, there will be slopes with high
negative gradients in the waveform. The final 3 criteria in
table 1 compare ABP features between adjacent beats.
Large sudden changes in beat-to-beat features are likely
indications of abnormality. Each criterion is assigned a
Boolean value for each beat, 0 for a normal range and 1
for an abnormal range (physiologically abnormal or
noise/artifact). jSQI takes a binary value which is the log-
ical AND of each 9 criteria. Compared to human annota-
tion of signal quality, this algorithm has been shown to
have a sensitivity of 1.00, and a positive predictivity of
0.91 [17].

The ABP signal quality index, ψ, is calculated by combin-
ing wSQI and jSQI as follows:

where 1 ≥ η ≥ 0 is the positive coefficient chosen to be η =
0.7 and jSQI = 1 indicates an abnormal beat. That is, if
jSQI indicates a good quality signal, wSQI can be believed.
Otherwise, wSQI is trusted less, by a multiplicative coeffi-
cient, η, which effectively defines an arbitrary cut-off that
defines the boundary between moderate and high quality
data [14].

Kalman filtering for tracking the ABP
1. Kalman filtering algorithm
The KF is an optimal state estimation method for a sto-
chastic signal [20,21] that estimates the state of a discrete-
time controlled process, x, with measurement data z,

where x and z are governed by the linear stochastic differ-
ence equations:

The random variables w and v are independent, white,
and possess normal probability distributions, p(w) ~ N(0,
Q) and p(v) ~ N(0, R). The matrices A, B, H are the coeffi-
cient state transition matrices, Q being the state noise cov-
ariance, R the measurement noise covariance and u an
optional control input to the state x.

The KF algorithm is given by the following equations:

where  and  are a priori and a posteriori state esti-

mates before and after a given measurement zk;  and Pk

are the error covariances of a priori and a posteriori esti-
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Table 1: Features used in signal abnormality index jSQI. k is the beat index.

Feature Description Abnormality CRITERIA

Ps Systolic blood pressure (SBP) Ps > 300 mmHg

Pd Diastolic blood pressure (DBP) Pd < 20 mmHg

Pm Mean arterial pressure (MAP) Pm < 30 or Pm > 200 mmHg

f Instantaneous heart rate (60/T) f < 20 or f > 200 BPM

Pp Pulse pressure (Ps - Pd) Pp < 20 mmHg

w Noise term: mean of negative slopes w < -40/100 mmHg/ms

Ps[k] - Ps[k - 1] Absolute change in instantaneous SBP |ΔPs| > 20 mmHg

Pd[k] - Pd[k - 1] Absolute change in instantaneous DBP |ΔPd| > 20 mmHg

T[k] - T[k - 1] Absolute change in instantaneous HR |ΔT| > 2/3 s

Table S1. ψ and ABP estimation error for different types of noise and percentage levels of noise. [see Additional file 2]
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mates,  is the measurement innovation (or

residual); and Kk is the gain required to minimise the a

posteriori error covariance, Pk.

We employed the KF to estimate the systolic, mean and
diastolic blood pressure derived from the ABP at each
pulse. However, in order to more heavily weight estimates
derived from cleaner data, we propose the use of the SQI,
ψ, to adjust the measurement noise covariance, R, when
Kk is updated. When the SQI is low, zk should be trusted
less, so Kk should be small, and hence we force R to be
large. This is achieved by modifying R as follows:

where R0 is chosen to be equal to unity and is the unal-
tered value of R. In other words, we do not assume the
noise is stationary and instead the state noise covariance
is adaptive based upon our signal quality measures.

It can be seen from Eq. (13) that this nonlinear transfor-
mation of R tends to unity as the SQI, ψ, tends to unity,
and therefore doesn't affect the measurement noise covar-
iance. When the SQI is high (near unity), the KF is forced
to trust the current measurement, zk, and elevates the
Kalman gain, Kk. At low values of ψ, R tends to infinity
(but in practice is limited to a large value) and forces the
KF to reduce Kk and hence trust the previous measure-
ments more than the current measurement. Furthermore,
an upper limit that defines the cusp between good and
bad data, ψt, is defined. When ψ <ψt, the KF is not
updated. The determination of the value of ψt is per-
formed in the same manner as for the ECG signal quality
metrics described in [14]. This involves plotting the error
with no SQI-control on the KF for each artifact type, and
picking the value of the SQI that corresponds to an accept-
able level of error for a particular application. In general,
a value of ψt = 0.5 provides an acceptable level of error (on
average less than 20 mmHg). It should be noted that some
types of artifact cause different levels of error and affect
the SBP, MBP and DBP in different manners; see discus-
sion.

2. KF initialization and operation

Following Tarassenko and Townsend [22,23], we pick the
simplest form of the KF, and set the state to be a scalar.
(Scalar notation is therefore used from this point
onwards.) Therefore we implemented three separate KFs,
one for each of the SBP, MBP and DBP. We further assume
that the blood pressure at each moment is approximately

equal to the blood pressure at the next moment (A≈1).
After neglecting the control input, Eq. (8) then reduces to

. In order to initialise the KF, one must estimate

Q, the state noise covariance matrix, and R, the measure-

ment noise covariance, to calculate  and Kk. R was sim-

ilarly initialised to unity, noting that it is immediately
modified by the SQI to reflect our trust in the data. Q was
empirically adjusted to have an initial value of Q = 0.1.
Values of Q < 0.1 lead to the KF trusting the state estimate
too much and not adapting to the new initial observa-
tions. Values of Q > 0.1 lead to the KF trusting the new
observations too much, and simply following the new val-
ues too closely. Setting H to unity then allows us to esti-
mate the Kalman gain, Kk, from Eq. (10) and hence the a

posteriori error covariance estimate, Pk, from Eq. (12). The

filter can then be run online with only a few iterations
(heart beats) for convergence. The Kalman residual is then

given as  at each update (each detected beat).

Methodology overview
The beat-onset detection method wabp [16] was applied to
ABP waveform and ABP waveform features (SBP, MBP
and DBP) were derived using the wSQI algorithm. The
SQI for each beat was derived using a 10s window, cen-
tered on each beat. Second-by-second ABP features and
SQI were acquired by calculating the median values of
these beats within a moving 10s window, centered on
each second. Then, the ABP values (SBP, MBP and DBP)
together with the SQI, ψ, were inputted to the KF to obtain
the optimal ABP estimation on a second-by-second basis.
The final ABP values and SQI of each 10 second epoch
were derived by calculating the median of the window's
second-by-second output of the KF estimate of the ABP
and SQI.

Merging of multiple KF estimates; Dealing with missing and 
irregularly sampled data
In general it is possible to fuse any number of independ-
ent Kalman filtered observations, X, using the technique
of Townsend and Tarassenko [22,23] such that

where Xk is the kth independent estimate and σk is the

innovation (equal to the residual, rk). In a recent paper

[14] we proposed a modification to this approach where
the SQI-scaled innovations are given by

r z xk k k= − −Hˆ

R R= −−
0
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. In this way, when one channel (e.g.

channel k = 1) is corrupted by artifact and the correspond-
ing parameter estimate (X1) is miscalculated, the SQI

(SQI1) will be low and the sudden change of X1, will make

the residual error (r1) large. The weighted innovation

( ) will therefore be large and the weighting for X1,

(which would be  for two channels), will

be small. The estimation of X will then rely more on X2

than X1.

In theory, each of the Xk estimates can be recorded at dif-
ferent (or irregular/uneven) sampling frequencies. Adjust-
ments to the innovation update sequence can be made to
adjust for the differing sampling frequencies, and the
inherent confidences in the different recording equip-
ment. In general, the innovation-based weighting func-
tion can be modified so that

where 1 ≥ λk ≥ 0 is a 'trust' factor for the kth channel of data.
An example of the use of this parameter in blood pressure
monitoring would be to fuse data from inflatable cuff
measurements with direct arterial blood pressure. In this
case, λk for the ABP could be set to 1.0, and the sphyg-
momanometer-based cuff pressure can be set to be 0.8 (or

some other relevant fractional value). In fact, the actual
value of λk can be calibrated for different BP measurement
devices, which have been shown to produce significantly
different errors [24-27]. For high pressure values, SBP is
generally under-estimated by non-invasive cuff measure-
ments (with respect to arterial measurements) [27] on
average by 10 to 30 mmHg and DBP over-estimated on
average by up to 10 mmHg [24]. At low blood pressures
the opposite effect is seen [27]. It is also well-known that
variation in protocol (such as arm position) can affect the
accuracy of measurements [28]. Such knowledge can be
incorporated into the confidence in the measure by
adjusting λk.

Robust heart rate estimation
Of course, a continuous blood pressure waveform also
carries more information than just blood pressure.
Together with ABP, heart rate estimation is extremely
important as a first-order estimate of cardiovascular sys-
tem performance. In a recent paper [14], we demonstrated
how the combinatory approach detailed above can
improve the heart rate estimate by fusing estimates from
the ECG and ABP, with SQI-modified innovations. (The
trust factors, λk's, were set to be equal to unity, to reflect
the fact that, in the absence of signal quality information,
we trust the ECG as much as the ABP signal to provide an
estimate of heart rate.) Figure 7 illustrates the general log-
ical flow of combining measures of HR and ABP from
both the ECG and ABP waveform. Note that ψ(ECG) is the

σ k k kr SQI2 2= ( / )

σ1
2

σ σ σ2
2

1
2

2
2/( )+

σ λk k k kr SQI2 2 2= ⋅/( ) (15)

General method for deriving heart rate and blood pressure from ICU signalsFigure 7
General method for deriving heart rate and blood pressure from ICU signals. Each channel of ECG and ABP is fed to 
beat detection and feature extraction algorithms. Signal quality, ψ, of each underlying signal is then performed. Derived param-
eters (HR and ABP) are fed to individual KFs, together with the signal quality of the channel of the channel from which the esti-
mate is made. Finally, estimates of the same parameter are fused, using signal quality and the innovation from the KF to provide 
a robust estimate of the parameter.
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signal quality of the ECG as described in [14] and ψ(ABP)
is the ψ described in this paper.

In other recent studies, we also used SQI-gated ABP sig-
nals to determine the validity of ICU arrhythmia alarms
[6,7,29], demonstrating that the ABP waveform can make
a significant difference to the accuracy of alarms when a
signal quality index is used.

Evaluation database
1. Normal clean data
The ABP estimate algorithm was evaluated on the MIMIC
II database, found at http://www.physionet.org/phys
iobank/database/mimic2db[18]. The following criteria
were used to determine low-noise segments of the data-
base: ECG signal quality [14] is good and ψ ≥ 0.95 and the
length of the segment is greater than or equal to one hour
in duration and at least one channel of ECG and ABP are
simultaneously available for analysis. From a 2500
patient subset with 150,000 hours of available data, the
resultant clean dataset included 437 cases, comprising
3762 one-hour or more (1.62 ± 0.69 hours) data seg-
ments, or 6084 hours total.

The six artificial ABP artifact models described above were
then separately added to the clean dataset at different per-
centages of noise duration to generate the noisy evalua-
tion dataset. In order to provide a periodic training
period, the artifacts were only added to every other 5
minute epoch in the clean data. Therefore, in each hour, 6
noisy 5 minute periods are created each followed by 5
minutes of clean data. The percentage of each 5 minute
noise segment containing artificial noise was set to 20%,
40%, 60%, 80% and then 100% for each experiment. That
is, for each 5 minute segment that is designated to contain
noise, artifacts are simulated and added at random (in a
non-overlapping manner) to these respective portions of
that 5 minute segment. Each noisy (5 minute data) seg-
ment was chose to follow a clean 5 minute segment. The
rationale for this distribution was to allow the KF a period
on which to train on the clean data. However, it turns out
that much shorter segments of clean data could be chosen
(see results section). Figure 8 illustrates the clean data and
its appearance after adding the 'saturate to ABP maximum'
artifact with differing percentages of artifact duration.

2. Abnormal arrhythmia data
The ABP estimation algorithm was also evaluated on an
abnormal data subset of the MIMIC II database, which
includes episodes of annotated arrhythmias [7]. The pres-
ence of annotated arrhythmias allowed us to evaluate the
performance of the algorithm for tracking heart rate
changes during arrhythmic episodes which display sud-
den changes in HR and ABP. No gold standard, labelled
blood pressure data is currently available, and so it was

not possible to determine an independent objective meas-
ure for ABP during the arrhythmic episodes. However, in
a related work [6,7] we created a database to aid the devel-
opment of a false alarm suppression algorithm for the
ICU. This database included a subset of over 5500 life-
threatening alarms taken from the same MIMIC II data-
base, for which we have simultaneous ECG and ABP data.
A team of experts annotated each alarm (at least twice,
with a separate pass and adjudication for disagreements),
for the categories of asystole, extreme bradycardia,
extreme tachycardia, ventricular tachycardia (VT) and ven-
tricular flutter/fibrillation (VF). We do not consider the
algorithm presented in this paper to be applicable to asys-
tole, since asystoles shorter than 10 seconds would not be
detected without parameter adjustments to the algorithm.
Furthermore, ventricular arrhythmias are waveform mor-
phology related, and therefore are not relevant to our HR-
tracking algorithm presented here.

In the MIMIC II database there are over 45,000 hours of
simultaneous ECG and ABP data with associated alarms
of the above types. These data include 707 episodes of
extreme bradycardia alarms (of which 506 are true and
201 false) and 1877 episodes of extreme tachycardia
alarms (of which 1444 true and 433 false). Such false
alarm rates (28.4% for bradycardia and 23.1% for tachy-
cardia) are typical of alarms in the ICU, which can be as
high as 85% [3], but for life threatening alarms are usually
around 40% [7]. Epochs of 20 seconds around each
extreme bradycardia and tachycardia alarm, (with the
alarm occurring at 17 seconds in the epoch) were chosen
providing a test set of 2584 events (1950 true episodes)
and over 14 hours (861 minutes) of simultaneous ECG
and ABP.

Results
Following our previous work [14], we considered the
Kalman filtered ABP of the clean dataset as the true ABP
and a gold standard by which to evaluate the different ABP
estimation methods. These were:

1. FE: Feature Extraction ABP estimate using wSQI.

2. SH: Sample-and-hold ABP estimate using ABP fea-
ture extraction routine of wSQI and clipping the
reported ABP value when ψ <ψt (SH). (This simulates
the operation of monitoring equipment in the ICU.)

3. KF: ABP estimate using the SQI-based Kalman filter.

In order to evaluate the accuracy of an estimation method
in the presence of noise, we chose the root mean squared
error (rMSE) of the difference between each ABP estima-
tion method and the true ABP. As expected, the rMSE is
larger the lower the signal quality. Table S1 [see Addi-
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tional File 2] details the mean SQI, Ψ, ± one standard
deviation, and the comparison of different ABP estima-
tion methods on the whole evaluation dataset for each of
the different types of artifacts detailed in section 2.1. Table
S1 also provides these results for different percentages of
artifact contamination. In general, for slow saturation arti-
facts, we can see that a value of ψ > 0.5 leads to a low ABP
estimation error (less than 10 mmHg) using the SQI-
based KF ABP estimation method described in this paper.
However, the reduced pulse pressure artifact results in rel-
atively large errors for the estimate of SBP when ψ ≤ 0.9,
indicating that we should trust the SBP less than the MBP
or DBP, particularly in this circumstance. SBP estimates
were corrupted mostly by saturations to ABPmin and
reduced pulse pressure. The MBP was mostly distorted by
saturations to ABPmax, square wave artifacts and satura-
tions to ABPmin.

Note also that the results for the sample-and-hold algo-
rithm (repeating the last value when ψ <ψt) are almost as
good as the SQI-modified KF algorithm. This is in part due
to the accuracy of the signal quality metric, and in part due
to the fact that the data do not vary much in terms of
blood pressure (or heart rate) for long periods of time.
Figures 9, 10 and 11 illustrate the range of heart rates and
blood pressures for the clean test data. Note that the range
over all segments is approximately log-normal for HR,
SBP, MBP and DBP and that most segments exhibit maxi-
mal changes of around 10 BPM and 20 mmHg. This is
reflective of the fact that ICU patients are well-managed
[30]. We therefore tested the algorithm on arrhythmias
which exhibit rapid and large changes in both ABP and
HR.

Based on previous work [6], we calculated heart rates
using the median of the four shortest pulse-to-pulse (PP)
intervals in the ABP waveform for tachycardic episodes,

Example of clean data and noisy ABPFigure 8
Example of clean data and noisy ABP. (a) clean data with 2 leads of ECG and 1 lead of ABP. (b) The same segment of ABP 
after adding artifact 1, (asmax), saturation to maximum ABP with (i) 20, (ii) 40, (iii) 60, (iv) 80 and (v) 100 percentage of noise 
duration. Note that the noisy segment begins 5s into the record at 5:00.
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and the four longest PP intervals for bradycardic episodes
[29]. Of the 707 bradycardia alarms, (506 true and 201
false), our algorithm indicated suppression of 149 of the
201 false alarms (74.1%) and only 2 of the 506 true
bradycardia alarms (0.4%). For tachycardia, 233 of the
433 false alarms (53.8%) were suppressed and only 6 of
the 1444 true alarms (0.4%) were suppressed.

When the ECG-derived heart rate is also used [14], and
fused with the ABP-derived heart rate, we found that our
algorithm indicated suppression of 167 of the 201 false
extreme bradycardia alarms, and accepted 500 of the 506
true extreme bradycardia alarms. In other words, our KF-
based HR estimation algorithm correctly tracked the true
abnormal drops in HR 98.8% of the time, and was only
'fooled' into tracking the artifacts (that tricked the moni-
tors into alarming) 16.9% of the time. In the case of tach-
ycardia, only one of the 1444 true alarms was suppressed
and 281 of the 433 false alarms were suppressed. That is,
over 99.9% of the true episodes of extreme tachycardia
were tracked correctly, and 35.1% of the false episodes
were incorrectly tracked as significant heart rate increases.

To test how much the use of the ABP waveform adds to
our analysis, we evaluated our KF-framework for false
alarm suppression using the ECG signal alone. In such a
scenario, we found that for extreme bradycardia, our algo-
rithm suppressed only 51 false alarms and suppressed 8
true alarms by mistake and for extreme tachycardia, our
algorithm suppressed 4 true alarms and only 155 false
alarms.

Finally, to test the relative contributions that our signal
quality metrics, and fusion approach make to the results,
we repeated the arrhythmia analysis using the SH method
with signal quality control. This resulted in a suppression
of 146 false alarms and 2 true alarms for extreme brady-
cardia and the suppression of 230 false alarms 8 true
alarms for extreme tachycardia. If the signal quality gating
is removed, then many more true alarms are suppressed.
In this scenario the results are that 155 false and 50 true
bradycardia alarms are suppressed, and 399 false and 159
true tachycardia alarms are suppressed. This indicates that
the signal quality analysis mainly contributes towards the
improved false alarm suppression performance, although
the data fusion step still provides a large increase in the
false alarm suppression rate.

Clearly, fusing independent heart rate estimators from the
ECG and ABP and using signal quality metrics results in a
large increase in false alarm suppression rate from both
single signal analysis, and conventional approaches, with
only a minor (0.8%) increase in true alarm suppression
rate (for extreme bradycardia) and a drop in true alarm
suppression rate (from 0.4% to 0.1%) for extreme tachy-
cardia.

Discussion
Our artifact classification scheme, and resultant evalua-
tions using artificial examples of each type of artifact, has
highlighted the different accuracies in ABP (SBP, MBP and
DBP) estimates in the presence of different types of arti-
facts. In general, the DBP is less noise-sensitive than the
MBP, which is less noise-sensitive than the SBP. Slow sat-
urations or decreases in pulse pressure (such as from
thrombosis in the arterial line) can lead to large errors.
High frequency noise appears to be less problematical in
assessing accurate ABP estimates. Therefore, an automated
method for classifying the type of artifacts identified in
this study would be useful in tuning the response of the
system, and allowing adaptation of the KF to change
based upon artifact types. Such schemes could involve
running assessments of the frequency content of the data
[31], step-change detection and saturation detectors (such
as tracking the ratios DBP/SBP and DBP/MBP).

Note that although the KF-based approach presented in
this article is, on average, only marginally superior to a
sample-and-hold approach when the signal quality is low,
which is reflective of the infrequent changes in ABP or HR
in the type of data we are using (i.e. ICU data) [30]. Of
course, if a rapid change occurs during an artifactual
period, the KF-fusion method is more likely (than the SH
method) to accurately track the changes, as it can make
use of data from other sources (such as a pulse oximeter
or a non-invasive blood pressure cuff reading). This is
demonstrated by the comparative results when applying

The distribution of true HR range (HRmax-HRmin) of the clean dataset comprising 3762 data segments of 1 hour or longer continuous waveform data (1.62 ± 0.69 h)Figure 9
The distribution of true HR range (HRmax-HRmin) of 
the clean dataset comprising 3762 data segments of 1 
hour or longer continuous waveform data (1.62 ± 
0.69 h).
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The distribution of true BP range (ABPmax-ABPmin) of the clean dataset for the DBP(a), MBP(b) and SBP(c) for each segment of data comprising 3762 data segments of 1 hour or longer continuous waveform data (1.62 ± 0.69 h)Figure 10
The distribution of true BP range (ABPmax-ABPmin) of the clean dataset for the DBP(a), MBP(b) and SBP(c) 
for each segment of data comprising 3762 data segments of 1 hour or longer continuous waveform data (1.62 
± 0.69 h).
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our algorithm to extreme bradycardia and tachycardia
with and without the addition of the ABP signal. Further-
more, the KF formulation presented in this article is a sim-
ple scalar formulation. However, it is evident that we can
track a two-dimensional state ([HR, ABP]), or even a four-
dimensional state ([HR, SBP, MBP, DBP]), to take advan-
tage of the relationship between the HR and ABP. This
may improve the tracking of the cardiovascular state and
allow more accurate automatic rejection of erroneous esti-
mates using our SQI-modified KF tracking procedure.
However, care must be taken to factor in the subtleties of
the cardiovascular changes in unhealthy patients (such as
during hemorrhage), and a model of the cardiovascular
system may be appropriate. Therefore, the technique pre-
sented in this paper could be extended to track cardiovas-
cular model parameters over time, such as in Sameni et al.
[32]. One simple extension of our approach that may be

most appropriate is to the tracking of cardiac output meas-
ures, since such measures involve an estimate of the heart
rate and blood pressure and require high quality wave-
forms. The method used in this paper may also allow
automatic error bounds to be delivered with any estimate
of the parameters being considered.

It is interesting to point out the generality of the results
presented in this paper. The source data (the MIMIC II
database) is a large ICU database consisting of a variety of
patients one would expect to find in a top-level US teach-
ing hospital. These include patient in the medical, surgi-
cal, coronary, trauma, and cardiac surgery care units. A full
description of the data can be found in [18]. Data were
collected using standard equipment mainly from radial
arterial lines. Although it is hard to say, without analyzing
large amounts of similar data, we do not imagine that

The joint-distribution of true HR range (HRmax-HRmin) and BP range (MBPmax-MBPmin) of the clean dataset for each segment of data comprising 3762 data segments of 1 hour or longer continuous waveform data (1.62 ± 0.69 h)Figure 11
The joint-distribution of true HR range (HRmax-HRmin) and BP range (MBPmax-MBPmin) of the clean dataset for 
each segment of data comprising 3762 data segments of 1 hour or longer continuous waveform data (1.62 ± 
0.69 h).
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changes in equipment or location would significantly
affect the generality of these results. The use of arterial
blood pressure lines outside of the ICU is rare (except in
the operating room), and so the data we have used is
likely to provide a general assessment. It is also important
to consider the generality of the artifact types. While prac-
tices between countries may differ marginally, we do not
imagine that this would lead to large differences in artifact
types for other monitoring locations.

The work in this paper may also be extended to analyze
photoplethysmograms (waveforms derived from pulse
oximetery), a more common and non-invasive method of
measuring the pulsatile flow in the cardiovascular system.
Although excellent proprietary systems exist for signal
quality assessment in such signals, and in some cases an
SQI is available from the oximeter, no information is pub-
licly available concerning the response of monitors to dif-
ferent artifact types, and under different recording
conditions. Furthermore, no data fusion framework of
blood pressure with other cardiac-related signals (such as
the ECG) has been published (or, as far as we know,
implemented in a practical scenario). Our approach may
provide a general system for assessing the signal quality
and using the SQI to automatically inform the validity of
derived estimates and may be appropriate in many medi-
cal settings.

Conclusion
We have presented a phenomenological classification sys-
tem for artifact types in the blood pressure, and artificial
methods for generating these artifacts. We have also pre-
sented an updated online system for continuously esti-
mating HR and ABP using an SQI-modified Kalman Filter,
and robustly weighting the estimates based on our trust in
a given data segment. Using an extensive database of
simultaneous ECG and ABP signals, we have evaluated
our HR and ABP tracking algorithm. The proposed algo-
rithm is shown to be robust and provides a predefined
threshold (ψ ≥ 0.9) for selecting data that may be trusted
to give accurate blood pressure estimates (with an average
error less than 10 mmHg). We have also demonstrated
that diastolic blood pressure estimates are more robust to
artifacts than mean blood pressure estimates, which in
turn are more robust to artifacts than systolic blood pres-
sure estimates. SBP estimates are likely to result in large
errors for even moderate to high signal quality levels for
certain types of artifact without signal quality analysis.
Saturation-type noise produced the largest errors for all
three blood pressure estimates. Results demonstrate that
stringent signal quality measures should be used to qual-
ify all blood pressure estimates. We have also shown that
fusing independent heart rate estimators from the ECG
and ABP together with SQIs in a KF framework provides a
large increase in performance when tracking real episodes

of extreme bradycardia and tachycardia over conventional
approaches used in the modern ICU.
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