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Abstract
Background: Arterial geometry variability is inevitable both within and across individuals. To
ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods
that can systematically account for geometric uncertainty.

Methods and results: A statistical framework based on Bayesian Gaussian process modeling was
proposed for mining data generated from computer simulations. The proposed approach was
applied to analyze the influence of geometric parameters on hemodynamics in the human carotid
artery bifurcation. A parametric model in conjunction with a design of computer experiments
strategy was used for generating a set of observational data that contains the maximum wall shear
stress values for a range of probable arterial geometries. The dataset was mined via a Bayesian
Gaussian process emulator to estimate: (a) the influence of key parameters on the output via
sensitivity analysis, (b) uncertainty in output as a function of uncertainty in input, and (c) which
settings of the input parameters result in maximum and minimum values of the output. Finally,
potential diagnostic indicators were proposed that can be used to aid the assessment of stroke risk
for a given patient's geometry.

Introduction
Vascular diseases such as atherosclerosis and thrombosis
are known to cause fluid mechanic derangements that
affect blood flow in arteries [1]. Previous research involv-
ing in vitro studies [2-5] aimed at understanding these dis-
orders have found that the main factors contributing to
changes in blood flow patterns are the pulsatile behavior,
viscosity of blood, the geometry of arteries and the arterial
wall distensibility [1,6]. Of these, geometry of the vessel
was found to be the most important factor influencing the
flow behavior [6]. In recent years, in silico blood flow sim-
ulations have gained lot of popularity. In particular, three
dimensional computational fluid dynamics (CFD) stud-
ies at the sites of curvature, bifurcations, and junctions
have facilitated the identification of vulnerable athero-

genic sites [1,7,8]. Simulations were performed to analyze
blood flow patterns at several sites such as carotid [9-13],
coronary [14-17], aortic [18,19] and iliac [20] arteries.
Many of these have highlighted the disturbed flow pat-
terns caused due to alterations in arterial geometry. Fur-
thermore, fluid mechanical forces such as wall shear stress
(WSS) have been identified to play a major role in the
pathogenesis and pathophysiology of atherosclerosis
[21].

Most of the work in the literature on computational
hemodynamics assume that arterial geometry definition
is precisely known. In practice, however, it is known to
vary both with and within individuals [22,23]. Hence,
there is a need for efficient numerical methods that can
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systematically account for geometric uncertainty and pre-
dict true flow behavior in real time. This problem is par-
ticularly challenging because it is difficult to characterize
the observed geometric variability using a small number
of variables – straightforward univariate or bivariate
parameter studies that involve varying a subset of the geo-
metric variables tend to be of limited use. A statistical
assessment hence becomes beneficial to gain insights into
the relationship between flow patterns and geometric
attributes. The basic idea of this approach is to construct
probabilistic models for the input uncertainties and sub-
sequently propagate this through the computer model to
assess the impact of variability in inputs on the outputs of
interest. A standard approach for statistical analysis is the
Monte Carlo simulation technique [24], where the com-
puter model is run repeatedly for randomly generated val-
ues of the inputs, and subsequently, the resulting data is
postprocessed to estimate the output statistics. However,
due to the requirement of a large sample-size, this
approach becomes computationally prohibitive, particu-
larly when high-fidelity models are used.

In the present work, we proposed the application of Baye-
sian Gaussian process modeling [25-27] to study the rela-
tionship between geometric factors and hemodynamic
metrics. The present approach can be viewed as a compu-
ter-based data mining strategy which extracts useful infor-
mation and synthesizes interesting relationships from
datasets generated during multivariable parameter stud-
ies. The input and output observational data was gener-
ated by running computer simulations on selected cases
and emulators constructed via Bayesian Gaussian process
modeling were used to analyze and summarize the data in
novel ways that are understandable and can potentially be
of clinical benefit.

To demonstrate the applicability of the proposed
approach, the human carotid artery bifurcation was cho-
sen as the anatomical site for analysis since it is a common
site for arterial disease to occur [6]. A novel three dimen-
sional parametric computer aided design (CAD) represen-
tation of the human carotid artery was defined. The
objective behind using a parametric geometry model for
statistical analysis is so that a range of probable
geometries can be automatically generated. However,
comparison between the data obtained for different sim-
ulations requires a method for ranking individual per-
formance. Whilst it is possible to visually differentiate
surface contours and/or velocity profiles between any two
cases, a numerical value (metric or indicator) is preferable
because it eases the level of comparison. A range of met-
rics are available in the literature, and most of these eval-
uate shear stress related expressions on a cell by cell basis
[3,5,28-34]. Following some of this work, we considered
the maximal wall shear stress (MWSS) as the metric for

statistical analysis. It has already been shown that large
changes in the magnitude of MWSS can play a role in the
embolic mechanism by which carotid lesions can induce
stroke [30]. Hence, it is important to understand the cor-
relation between the geometric variability and MWSS in
the human carotid artery.

A design of experiments (DOE) approach [35] was
employed to generate a set of candidate geometries for
steady state three dimensional flow analysis. The data gen-
erated from these runs was then used to construct a Baye-
sian Gaussian process emulator which approximated the
MWSS as a function of the geometric variables. This
model was subsequently employed as a computationally
cheap emulator to compute the statistics of the output
when the inputs were modeled as random variables and
to estimate the degree of influence of each geometry
parameter on the MWSS. Later, the application of the
Bayesian emulator to identify geometries that have the
highest and lowest MWSS values was demonstrated. Sub-
sequently, pulsatile simulations on the same candidate
geometries were performed to compare these results with
the steady state case. Finally, we proposed potential diag-
nostic indicators that are capable of estimating the degree
of severity with respect to the MWSS metric for a given
patient's geometry thereby aiding the assessment of stroke
risk.

Methods
Parametric model of the carotid bifurcation
Parametric computer aided design (CAD) definition of
the carotid bifurcation enables the automatic generation
of typical geometries by varying the parameters in the
baseline CAD model. In so doing, not only is it possible
to explore the impact of alternative definitions on the
flow and its associated shear stress parameters but also,
more importantly, the relationships between hemody-
namics and a wide range of geometric parameters can be
investigated in detail. The power of parametric geometry
representation lies in its ability to simply generate a range
of alternative geometries using the baseline shape as a
template that is then reconfigured according to new values
of the variable parameters. Note that it is also possible to
morph the parametric model in order to reproduce a
patient-specific geometry obtained from magnetic reso-
nance imaging (MRI) [36-38] or contrast-enhanced x-ray
computer tomography [39] scans. Image reconstruction
techniques have reached a new level in the recent past
where realistic geometry shapes were extracted from these
scans in real time and subsequently, CFD studies were per-
formed. In the context of our work, for example, the CAD
model parameters can be estimated from a scan by solving
an optimization problem involving minimization of an
appropriate distance metric characterizing how well the
CAD model reproduces the scanned geometry. In combi-
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nation with regularization methods, the parametric CAD
approach can be potentially useful in smoothening
geometries obtained from imaging techniques.

Careful consideration of a number of geometry descrip-
tions including [6] and [40] shows that, from a CAD per-
spective, insufficient information is available in all of
them to construct a parametric CAD model from scratch,
without making a number of assumptions, and/or unreal-
istic constraints are imposed that limit the overall flexibil-
ity of the models. Consequently, new parametric CAD
definitions of the carotid geometry were presented in this
paper. There are some similarities with older models but
a number of important innovations were introduced that
yield complete and reusable definitions and provide suffi-
cient flexibility to facilitate parametric studies. This CAD
representation was mainly based on the Y-shaped model
developed in [6].

Appendix A describes the construction of the CAD model
that is designed to provide a more complete representa-
tion (than previously available) of the human carotid
artery geometry. Table 1 summarizes the values of all the
parameters used in the baseline geometry. To construct a
complete parametric geometry, a CATIA [41] macro was
run each time a new model was required. This macro used
parameters contained within a text file. The three dimen-
sional parametric CAD model of the human carotid artery
bifurcation thus generated was exported for mesh genera-
tion using GAMBIT [42]. All the meshes were constructed
from scratch in response to a template journal file (which
includes all the batch commands) that was read by GAM-
BIT [42]. In this way, the journal file was used for facilitat-
ing automatic mesh generation and subsequently, the
mesh file was exported for CFD simulations using FLU-
ENT [43].

Bayesian Gaussian process modeling

In this section, we describe the theoretical and computa-
tional aspects of Bayesian Gaussian process modeling and
describe its application to mine data obtained from com-
putational simulations. To illustrate, consider a computer

code which takes as input the vector x ∈ �p and returns a
scalar output y(x). Let a design of computer experiments
(DOE) strategy be applied to decide the settings of the
inputs at which the computer code must be run [35]. In
the context of hemodynamics, this step essentially
involves generating a set of candidate geometries at which
the flow solver is run to evaluate a hemodynamic metric
of interest. The observational dataset thus created can be
compactly written as  := {X, y}, where X = {x(1), x(2), ...,

x(l)} ∈ �p × l and y = {y(1), y(2), ..., y(l)} ∈ �l.

The objective of Gaussian process modeling is to construct
a computationally cheap emulator that can be used in lieu
of the original computer code. The basic assumption
made here is that the observed outputs {y(1), y(2), ..., y(l)}
are realizations of a Gaussian random field with parame-
terized mean and covariance functions. The assumed
model structure used for the emulator can hence be writ-
ten as

Y(x) = β + Z(x), (1)

where β is an unknown hyperparameter to be estimated
from the data and Z(x) is a Gaussian stochastic process
with zero-mean and covariance


Cov Z Z R( ( ), ( )) ( , ),x x x′ = ′σ z

2 x (2)

Table 1: Dimensions of the human carotid artery bifurcation 
(Locations in Figure 1). Note that the split ratio values are not 
mentioned here and units of all the parameters shown here 
(excluding the angles) are in mm

Description Location Mean value

Angles 1 25.1°
2 25.4°

External carotid 3 5.6
4 15.0
5 5.5
6 15.0
7 4.6
8 15.0
9 4.6

Internal carotid 10 8.3
11 7.28
12 8.9
13 7.2
14 8.2
15 9.52
16 6.0
17 12.0
18 5.7
19 9.0
20 5.7

Common carotid 21 8.0
22 24.0
23 8.0
24 24.0
25 8.0
26 24.0
27 8.0

Other 28 8.0
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where R(x, x') is a correlation function that can be tuned

to the training dataset and  is the so called process var-

iance which is another parameter to be estimated from the
data. Note that by definition, R must be positive-definite.
A commonly used choice of correlation function is the sta-
tionary family which obeys the product correlation rule
[44].

where θj ≥ 0, 0 <pj ≤ 2, j = 1, 2, ..., p are the hyperparameters.
We shall hence use the symbol θ to denote the vector of
hyperparameters. Furthermore, we have chosen pj = 2 to
reflect the belief that the underlying function being mod-
eled is smooth and infinitely differentiable. The hyperpa-
rameters θ which control the nonlinearity of the emulator
are estimated from the data. For example, small values of
θj indicate that the output is a smooth function of the jth
variable while large values indicate highly nonlinear
behavior. It is also possible to tune the parameters pj to the
data which allows for the possibility of modeling func-
tions which may be discontinuous. In theory, the choice
of an optimal covariance function is data-dependent.
However, in practice it has been found that the parameter-
ized covariance function in Equation (2) offers sufficient
flexibility for modeling smooth and highly nonlinear
functions [45].

The Bayesian approach to data modeling used here
involves two levels of inferencing. The objective of the first
level of inferencing is to estimate the unknown hyperpa-
rameters from the given observational dataset . This
can be done using Bayes theorem which gives

where P(θ, β, | ) is the posterior probability of the

hyperparameters,

P( |θ, β, ) is the likelihood, P(θ, β, ) is the

assumed prior for the hyperparameters and P( ) is a
normalizing constant called the evidence. To ensure com-
putational efficiency, we adopt an empirical Bayesian
approach, wherein the posterior distribution of the hyper-
parameters is approximated by point values obtained by
maximizing the likelihood function – see the subsection
that follows for details.

Once the hyperparameters have been estimated, the sec-
ond level of inferencing involves using these values to esti-
mate the value of the unknown function y(x) at a new
point, say x. By virtue of the prior that the observed out-
puts are the realizations of a Gaussian random field, the

posterior distribution P(y(x)| >, θj, β, ) is Gaussian

[46], i.e., the prediction of the emulator at a point x can

be written as Y(x) ~ ( (x), C(x, x')). After some alge-
braic manipulations (see, for example, [27]), the posterior
mean and covariance can be written as follows:

and

where R ∈ �l × l is the correlation matrix computed using
the training points whose ijth element is computed as Rij
= R(x(i), x(j)). r(x) = {R(x, x(1)), R(x, x(2)), ..., R(x, x(l))} ∈
�l is the correlation between the new point x and the
training points, and 1 = {1, 1, ..., 1} ∈ �l. It can be
observed from Equations (5) and (6) that the Bayesian
inferencing approach ultimately leads to an approxima-
tion of the computer code as a multidimensional Gaus-
sian random field. The posterior variance computed using
Equation (6), i.e., C(x, x), can be interpreted as an esti-
mate of the uncertainty involved in making predictions at
a new point x. Note that this uncertainty arises from the
fact that only a finite set of points are used to construct the
emulator. The quantification of uncertainty in the output
due to variability in the inputs will be dealt with in the
next section.

In practice, for the sake of computational efficiency, we
compute the Cholesky decomposition of R. This allows
the posterior mean to be computed at any point of interest

using a vector-vector product, i.e., (x) = β + r(x)Tw,

where w = R-1(y - 1 ). However, the computation of the

variance (or error bar) of the posterior process (i.e., C(x,
x)) requires a forward and back substitution.

Maximum likelihood estimation

As described previously, Equation 4 can be used to esti-
mate the posterior distribution of the hyperparameters,
for example, using Markov chain Monte Carlo simulation
techniques [25,26]. In practice, however, an empirical
Bayesian approach is computationally more efficient. In

this approach, the hyperparameters θ = {θj}, j = 1, 2, ..., p,

β, and  which arise in the correlation function defined

σ z
2

R( , ) exp( | | ),x x x x′ = − − ′
=

∏ θ j j j
p

j

p
j

1

(3)



P
P P

P
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( )
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in Equation (2) are estimated by maximizing the likeli-
hood function. Maximization of the likelihood function
leads to those values of the hyperparameters that are most
likely to have generated the training dataset. Since we
invoked the prior that the observed outputs are the reali-
zations of a Gaussian random field, the likelihood func-
tion is given by

The negative log-likelihood function to be minimized
(after dropping out constant terms that do not depend on
the hyperparameters) can be written as

Numerical optimization techniques are required for the
maximization of Equation (8) to estimate the unknown
parameters; see reference [27] for a detailed discussion of
the computational and implementation aspects. Since

computing L(θ, β, ) and its gradients involves comput-

ing and decomposing the dense l × l covariance matrix R
(requiring (l3) resources) at each iteration, maximum
likelihood estimation can be prohibitively expensive even
for moderately sized data, e.g., say a few thousand points.
Recent work to address this issue has led to data parallel
techniques [47] which can cope with large datasets. In the
context of the present study, due to the high computa-
tional cost involved in solving the Navier-Stokes equa-
tions, only a modestly sized training dataset is available
for model building. As a consequence, the computational

cost associated with maximization of L(θ, β, ) is negli-

gible.

It is worth noting here that for some datasets the correla-
tion matrix R may be ill-conditioned, particularly when
two or more training points lie close to each other. To cir-
cumvent this difficulty, we add a small term (say 10-6) to
the diagonal elements of R. A more robust strategy would
be to employ a singular value decomposition of R – this
would however be computationally expensive for large
datasets.

Model validation
After emulator construction, validation studies will help
in assessing how well the approximate model agrees with
the true model. A brute force approach would be to run
the numerical simulation for a number of additional
geometries (testing points) and check how well the
approximate model correlates at these points. In most
practical applications, generation of additional testing
data is computationally expensive. This motivates the
development of alternative model diagnostic measures
that can be evaluated more cheaply.

The accuracy of the prediction error estimate (i.e., the pos-
terior variance C(x, x)) depends on the validity of the
assumption made in creating the emulator; namely that a
Gaussian process prior is appropriate for the simulator
under consideration. Techniques for model diagnostics
available in the literature [48] can be applied to check the
validity of this assumption and the accuracy of the
approximation. One such measure is the standardized cross
validated residual (SCVR) defined below

where -i(x) and C-i(x, x) denotes the mean and variance

of the prediction at a point x without using the ith training
point. SCVRi can be computed for all the training points

by removing the contribution of the corresponding point
from the correlation matrix R.

In the cross validation procedure, it is generally assumed
that the maximum likelihood estimates for the hyperpa-
rameters do not change when one training point is
removed from the training set. If the Gaussian process
prior is appropriate for the problem under consideration,
SCVRi will roughly lie in the interval [-3, +3]. This implies

that given the posterior predictions of the emulator at a
new design point x, the actual output value lies in the

interval  with a high

level of confidence. More details and additional valida-
tion procedures such as leave-one-out and leave-two-out
validation can be found in [27].

Post processing of the emulator
Once the Bayesian Gaussian process emulator has been
constructed and validated, it can be mined in the post-
processing phase. In this section, we describe how the
emulator can be applied to: (i) compute statistics of the
output when the inputs are modeled as random variables
with a specified joint probability distribution, (ii) identify
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the relative importance of each input variable and (iii)
identify which settings of the inputs lead to maximum
and minimum values of the output.

Uncertainty analysis
The Monte Carlo simulation (MCS) technique is com-
monly used to approximate the statistical moments of
implicit functions of the form y(x) when the elements of
x are random variables following a given distribution. To
illustrate the MCS technique, consider the following
multi-dimensional integral given by

where y(x) is a function calculated by running an expen-
sive computer model.

In the MCS technique, y(x) is evaluated at numerous
points by drawing samples from the distribution P(x) and
the integral is subsequently approximated as

. The convergence rate of the Monte

Carlo estimate is . Hence, to ensure accurate

approximations, a large sample size becomes necessary;
for example, to improve accuracy by one decimal place,
around 100 times more samples will be required. Another
drawback of the MCS technique is that it wastes informa-
tion since the realizations of the inputs x(i), are not used
in the final estimate [49]. It is worth noting here that it is
possible to employ quasi-MCS techniques that enjoy
faster convergence rates [27]. However, even so, the result-
ing reductions in computational cost are often not very
significant. The emulator-assisted uncertainty analysis
approach discussed below presents a computationally
more efficient alternative to simulation techniques. Fur-
ther, the emulator based approach uses both the input
realizations x(i) and the corresponding output values to

estimate �y(x)�.

Consider the case when the inputs of the simulation code
are modeled as random variables with joint probability
density function P(x) and it is sought to approximate the
first two statistical moments of the computer code output
y(x). We discuss next how a Gaussian process emulator
can be used to approximate the first two statistical
moments of y(x). Recall from Equations (9) and (10) that
the emulator is itself a Gaussian random field, i.e., Y(x) ~

( (x), C(x, x)). As a consequence the statistical
moments of the emulator have to be described using ran-

dom variables [25,27]. More explicitly, the mean of the
emulator output is a Gaussian random variable whose sta-
tistics can be computed as follows

where

and χ denotes the support of the distribution function
P(x).

Similarly, the posterior variance of the emulator is again a
random variable, whose mean and variance can be com-
puted as

and

It is to be noted here that the multidimensional integrals
in the preceding equations can be analytically computed
if the elements of the input vector x are uncorrelated
Gaussian random variables [50]. For more general distri-
butions, simulation techniques can be applied to com-
pute various statistics of interest including the probability
distribution functions. This can be done efficiently since
the prediction of the output at a new point x using the
emulator is computationally very cheap. Furthermore, it is
also possible to exploit the emulator sensitivities which
are readily computable in order to accelerate the conver-
gence of simulation schemes [51].

Sensitivity analysis
It can be seen from Equations (5) and (6) that the Baye-
sian model does not explicitly reveal the input-output
relationships in a readily interpretable way. Conse-
quently, this predictor is not suitable for explaining the
functional relationship between the covariates and the
response. In order to identify this relationship, the effect
of each input needs to be isolated from the others. The

I y y= 〈 〉 = ∫( ) ( ) ( ) ,x x x xP d
χ

(10)

I m y i
i

m≈ =∑( / ) ( )( )1
1

x
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response can be decomposed into main effects for each
input and this main effect of the ith input variable which
can be obtained by integrating out the other factors is
defined as follows:

The above integral can be numerically computed by
approximating it by a sum over a grid of m points xh

(1), ...,
xh

(m). These points can be generated using the Latin hyper-
cube sampling (LHS) technique [52]. Note that since the
Bayesian emulator also provides the posterior variance,
error bars on the main effects can be readily computed.
Similarly, the effect of two or more covariates (joint
effects) can be investigated by integrating out all the other
covariates or by fixing the other covariates at some values
[44,53].

To allow effective presentation of the sensitivity trends,
particularly for problems with many variables, it is often
useful to condense the main effects into scalar sensitivity
factors. One such proposal originally suggested by Sobol
[54] involves calculating the following sensitivity metric
for each variable in terms of the main effect γi defined ear-
lier.

The values of Si, i = 1, 2, ..., p can subsequently be plotted
in a pie chart to indicate the sensitivity of each variable.
Similarly, it is also possible to define sensitivity factors
whose magnitudes indicate the importance of interaction
effects [54,55].

Estimating worst-case settings
This section briefly discusses how the Bayesian emulator
can be used to estimate settings of the inputs that give rise
to maximum and minimum values of the output being
modeled. A straightforward way to do this would be to
directly maximize/minimize the posterior mean predicted
by the emulator as a function of the input variables. This
naive approach would work well provided the approxima-
tion quality of the emulator is sufficiently high. More gen-
eral-purpose statistical criteria that employ the posterior
variance along with the mean to enable the solution of
complex optimization problems can be found in the engi-
neering design literature [27].

In the present study, the probability of improvement
(PoI) criterion was used to identify input settings that
result in worst-case values of the output. The PoI criterion
encapsulates the posterior mean as well as the variance

(error bar) predicted by the emulator. For example, to find
a geometry with maximum MWSS, the following optimi-
zation problem is solved.

Maximise : P[Y(x) > y+], (18)

where y+ denotes the highest value of MWSS among all the
geometries in the training dataset used to construct the
emulator. It can be noted that the PoI criterion indicates
the probability that the output at a given point is greater
than y+. Hence, by maximizing P[Y(x) > y+], it becomes
possible to identify geometries that are likely to have
higher values of MWSS compared to those in the training
dataset.

Since the emulator prediction Y(x) at a given point x is a
Gaussian random variable, the PoI can be computed
exactly in terms of the standard normal distribution func-
tion. Note that for the case when it is desired to find
geometries which have lowest MWSS, the criterion P[Y(x)
<y-] can be maximized, where y- denotes the lowest MWSS
among all the geometries in the training dataset.

Results and discussion
Model geometry and problem description
To demonstrate the applicability of the Bayesian Gaussian
process modeling technique for assessing the relation-
ships between a wide range of geometric parameters and
MWSS, the widths at different cross-sections of the carotid
artery (locations 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 21, 23,
25 and 27 in Figure 1) were considered as random varia-
bles which lead to a total of 14 input variables. The pertur-
bation of each parameter was taken as 25% of the
corresponding parameter's mean value given in Table 1.
These perturbations were considered on each parameter
keeping in mind the limitations posed by the geometry
modeling tool and the mesh generator. To obtain a rea-
sonable training dataset, 100 geometries were generated
using optimized Latin hypercube sampling (LHS) tech-
nique [27,52]. LHS technique generates data that can be
used to fit a Gaussian process model that reliably predicts
the true trends of the input-output relationship.

All the geometries were created using CATIA [41] and the
files were exported to GAMBIT [42] for mesh generation
in standard for the exchange of product (STEP) model
data format. The meshes thus generated were exported to
FLUENT [43] where the numerical simulations were per-
formed. The continuity equation

and the laminar incompressible momentum equations

γ i i h

h i
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were solved where ui, ρ, p and ν denote the velocity, den-
sity, pressure and the kinematic viscosity, respectively. A
parabolic inflow velocity profile was applied at an average
Reynolds number, ℜ = 271 (equivalent to the average Rey-
nolds number of the pulse used in [56]), where

and density, ρ = 1035 kg.m-3, viscosity, μ = 0.0035 kg.m-

1.s-1, the CCA diameter, w = 0.008 m and  is the mean
velocity. The mass fluxes through the ICA and ECA were
fixed in the ratio 70 : 30 (as used in the experimental stud-
ies conducted by [2]). The semi-implicit method for pres-
sure-linked equations (SIMPLE) pressure correction
algorithm was used with second order spatial accuracy.
Other solver settings included a second order upwind
scheme for momentum discretization; a standard scheme
for the discretization of the pressure equation. The princi-
pal assumptions in the present study were to consider the
flow as steady, blood as a Newtonian fluid and the walls
to be rigid. After obtaining a converged solution, the mag-
nitude of MWSS was extracted for each geometry in order
to create the training data for constructing the emulator.

Mesh dependence and flow setup
Before performing the numerical simulations, a mesh
dependence study was performed on one of the candidate
geometries from the training dataset and Table 2 summa-
rizes the range of interval sizes, the overall cell count and
the corresponding values of the magnitude of MWSS. It
can be seen that the predictions for MWSS for cases with
interval sizes 0.48 and 0.36 are close to each other. In
order to find a trade-off between computational cost and
accuracy, a fixed interval size of 0.48 was used on all the
meshes which were subsequently generated on the candi-
date geometries. Structured mesh configurations were
used for the common, internal and external carotid vol-
umes. However, a hexcore mesh was used for the bifurca-
tion volume which included tetrahedral elements on the
outer edges of the volume and structured hexahedral ele-
ments in the center of the volume. The cell count was
found to vary with respect to each geometry and on an
average the number of cells used to discretize each geom-
etry was about 110, 000.

∂
∂

+
∂

∂
= − ∂

∂
+ ∂

∂ ∂
ui
t

u jui
x j

p
xi

ui
u j u j

( )
,

1 2

ρ
ν (20)

ℜ = ρ
μ
Uw (21)

U

Table 2: Mesh dependence configurations for a candidate 
geometry in the training data

Interval Size Cell Count Magnitude of MWSS(Pa)

0.96 18432 4.29743
0.84 23466 4.30954
0.72 35362 4.37759
0.60 53156 4.45912
0.48 115980 4.40611
0.36 241795 4.40634
0.24 835996 4.38985

Diagrammatic representation of the human carotid artery bifurcationFigure 1
Diagrammatic representation of the human carotid artery 
bifurcation. Mean values (widths/lengths) at different loca-
tions are shown in Table 1. Note that the split ratio parame-
ters are not shown here.
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Influence of geometry
Steady state simulations for the 100 geometries were
undertaken using FLUENT [43] and MWSS for each geom-
etry was extracted for constructing a Gaussian process
model. It can be seen from Figure 2 that significant varia-
tions exist in the geometries considered for the present
study. The objective is to construct an emulator that
approximates the MWSS as a function of the geometry var-
iables. The motivation for studying this relationship arises
from the fact that elevated shear stress regions have the
maximum probability of lesion formation. Further,
MWSS enables the study of the role of high shear stresses
in advanced occlusive lesions. The values of MWSS
extracted for all the geometries that were used as training
data for the emulator are shown in the form of a scatter
plot in Figure 3. It can be seen from the figure that there is
a significant change in the magnitude of MWSS for the
cases considered for this study. This suggests that varia-
tions in geometry have a significant impact on the value
of MWSS.

A Bayesian emulator was constructed using the 100 data
points and the validation tests presented earlier were con-
ducted to judge its predictive capability. Figure 4 shows
the SCVR measure computed using the emulator. It can be
noted that most of the values for SCVR lie within the inter-
val [-3, 3], suggesting that the error bars predicted by the
emulator are reasonably tight. It can be seen that a reason-
ably accurate model can be constructed in spite of the fact
that a modestly sized training dataset was used.

Distribution of maximal wall shear stress
MCS with sample size of 5000 was applied to the Bayesian
emulator to approximate the statistical moments of
MWSS (Figure 5). It was observed that for some
geometries, MWSS occurred on the inner wall of the ICA,
whereas for others, it was located on the inner wall of the
ECA. To investigate this issue in detail, the values of
MWSS on the inner walls of the ICA and ECA were
extracted to construct two separate emulators. Figure 6
shows the probability distribution of MWSS occurring on
the ICA and ECA, respectively. These distributions were

Standardized cross validated residual (SCVR) when 100 train-ing points are usedFigure 4
Standardized cross validated residual (SCVR) when 100 train-
ing points are used.
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Scatter plot of the MWSS vs geometry cases considered (Units of MWSS in Pa)Figure 3
Scatter plot of the MWSS vs geometry cases considered 
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generated using MCS applied to the emulators with sam-
ple size 5000. The probability of MWSS occurring on the
inner wall of the ICA was also calculated using the emula-
tor and it was found to be approximately 0.72. This sug-
gests that for most of the geometries, the MWSS occurs on
the inner wall of the ICA.

Main effects
Main effect plots generated by integrating out the other
covariates are shown in Figure 7. The main effect plots of
the widths at locations 5, 7, 9, 14, 20 and 25 were very flat.

In contrast, the main effect plots for the widths close to
the flow divider at locations 3, 10 and 21 were nonlinear.
Furthermore, the parameter at location 12 governing the
width of the sinus bulb also exhibited a nonlinear behav-
ior. It has already been observed that the bifurcation
region is vulnerable to atherogenesis due to the nature of
its geometry [11]. Furthermore, high shear regions were
identified on the inner walls of the ICA and ECA. From the
present study, it can be inferred that the probability of
plaque rupture, plaque ulceration and thromboembolism
is maximum near the bifurcation region, particularly on
the inner walls of the ICA and ECA. In particular, we infer
that geometries having larger curvature of the sinus bulb
tend to have high values of MWSS. Also, a significant non-
linear behavior was observed at location 27 which corre-
sponds to the inlet diameter at the upstream of the CCA.
This is due to the fact that at a constant Reynolds number,
changes in inlet area influences the magnitude of the
velocity which consequently determines the shear stress
distribution downstream.

Probability of improvement
We now discuss the application of Bayesian Gaussian
process modeling to predict new geometries which have
highest and lowest MWSS. The basic idea is to use the
probability of improvement (PoI) criterion for optimiza-
tion. The motivation is to employ these geometries and
their corresponding values of MWSS for defining metrics
which perhaps can be further used for assessment of
stroke risk. An optimization study was conducted to pre-
dict a geometry which has the highest MWSS using the PoI
criterion. Subsequently, the true value of the MWSS was
computed using FLUENT [43]. Note that, if the CFD pre-
diction does not agree with the emulator prediction, then
a new emulator can be constructed by appending the
point to the original training dataset and the criterion in
Equation (18) can be maximized in order to obtain a new
geometry. This update procedure can be carried out in an
iterative fashion until a favorable geometry is obtained.
However, the CFD predicted value of MWSS for this case
(9.2879 Pa) was found to agree closely with the emulator
prediction (9.1493 Pa). It can be seen that the CFD pre-
dicted value of the MWSS was greater than the maximum
value of MWSS in the training dataset (9.0841 Pa). Figure
8 shows the velocity contours and more importantly the
shape of the predicted arterial geometry. It can be clearly
seen that the shape of the predicted arterial geometry has
a sinus bulb that has larger curvature compared to the
baseline case.

Similarly, the criterion P[Y(x) <y-] was maximized to
obtain a geometry which has lowest MWSS. In this case, it
was found that the CFD prediction (2.1464 Pa) was not in
close agreement with the emulator prediction (1.3539
Pa). Hence, the update procedure was repeated four times

Probability density function of MWSS occurring on the ICA and ECAFigure 6
Probability density function of MWSS occurring on the ICA 
and ECA.
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and it was found that the CFD predicted value of the
MWSS (1.7907 Pa) for the new geometry was less than the
minimum value of MWSS among the training dataset
(1.8233 Pa). Figure 9 shows the velocity contours and the
shape of the arterial geometry for this case. The results
obtained for these cases suggest the applicability of the
emulator model to efficiently predict arterial geometries
having low and high values of MWSS by optimizing a suit-
able objective function.

Unsteady simulations
So far, the applicability of Bayesian modeling for statisti-
cal analysis has been demonstrated by performing steady
state simulations on the candidate geometries. In this sec-
tion, unsteady simulations were performed on the same
candidate geometries and the PoI criterion was applied.
As an inflow boundary condition at the inlet of the CCA,
we used a mean inflow pulse taken from [56]. A time
dependence study was performed on the mesh interval
size 0.48 (mesh size taken for the steady state flow analy-
sis) with time steps 0.001, 0.0001 and 0.00001 seconds.
Since the flow is pulsatile, we computed the maximum

Main effect plots of the parameters (9 out of 14) are shown in which the middle line is the estimated effect and the other lines are the ± 95% confidence limits based on the standard errorFigure 7
Main effect plots of the parameters (9 out of 14) are shown in which the middle line is the estimated effect and the other lines 
are the ± 95% confidence limits based on the standard error. On the x-axis of each subplot, the widths at the locations are 
normalized using their bounds and on the y-axis of each subplot, MWSS (units – Pa) is shown. Note that the main effects of the 
remaining parameters at locations 7, 9, 14, 20 and 25 (not shown) are flat and similar to the effect at location 5 shown in this 
figure.
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value of the average wall shear stress in a time period (T =
0.917 sec) for each case. Henceforth, this new metric is
denoted as maximal average shear stress (MASS). The
MASS values for these cases were found to be 4.1405,
4.1347 and 4.1057 Pa, respectively. Consequently,
0.0001 sec was selected providing a reasonable balance

between accuracy and computational cost. All unsteady
simulations employed the pressure implicit with splitting
of operators (PISO) pressure-velocity coupling scheme in
FLUENT [43]. For the purpose of validation, the average
wall shear stress for the case with mesh interval size 0.48
mm and time step 0.0001 sec was computed and found to
be 0.692 Pa. This value lies within the accepted range of
values reported in [57]. Recall that the dimensions and
boundary conditions of the baseline case closely match
with the data described in [2,6,40,56].

After pulsatile simulations were performed on the same
candidate geometries, an emulator was constructed and
the PoI criterion was used to predict an arterial geometry
having a low value of MASS. The contours of velocity and
wall shear stress at the end of the cycle for this geometry
are shown in Figure 10. By closer inspection of Figures 9
and 10, it can be seen that the shapes of the two
geometries resemble each other very closely. As a conse-
quence, we infer from the perspective of Bayesian mode-
ling that steady state simulations can accurately identify
key geometric parameters which influence MWSS in the
carotid bifurcation at a fraction of the computational cost
of pulsatile simulations. For example, each pulsatile sim-
ulation takes about 14.5 CPU hours on an AMD Athlon
XP 2800+ processor [58] whereas a steady state simula-
tion for the same case takes only about 24 minutes.

Potential diagnostic indicators

So far, we demonstrated the ability of the Bayesian Gaus-
sian process model to predict geometries which have

Geometry having minimum value of MASSFigure 10
Geometry having minimum value of MASS. Velocity magni-
tude (m/s) contours on center plane.

Geometry having maximum value of MWSSFigure 8
Geometry having maximum value of MWSS. Velocity magni-
tude (m/s) contours on center plane.

Geometry having minimum value of MWSSFigure 9
Geometry having minimum value of MWSS. Velocity magni-
tude (m/s) contours on center plane.
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highest and lowest values of MWSS. We now discuss how
the optimization results can be employed in a clinical sce-
nario to estimate the degree of severity with respect to
MWSS for an individual patient. For example, given the
geometry of the carotid bifurcation of a patient using an
MRI scan [36,38], a least squares fit to the proposed CAD
representation can be first carried out. The parameters
from the fit can then be fed into the emulator to approxi-
mate the MWSS (or any other metric of interest) and its
corresponding error bars in real time. The resulting
approximation for the MWSS can then be compared with
the values obtained for the geometries in the earlier sec-

tion. In particular, if  denotes the approximation to

the MWSS for a given geometry, Γg is the minimal value of

MWSS and Γb is the maximum value of MWSS, then the

degree of severity for this case with respect to the metric
MWSS can be defined as

Alternatively, the geometry of the patient can be com-
pared with those predicted in the previous section. A sim-
ilar approach can be applied for evaluating the bounds
with respect to any indicator which synthesizes different
flow behavior from which s can be estimated. It should

be noted that Γg and Γb have been estimated in a laminar

flow regime with fixed outflow boundary conditions and
by assuming the walls to be rigid. To extend this concept
of assessment on the severity of disease for a more physi-
ologically realistic case, we can incorporate realistic
boundary conditions and the arterial wall distensibility to
estimate s. Furthermore, offline simulations on an

extended set of geometries can be carried out to improve
the predictivity of the emulator.

Conclusion
This paper presented a computer-based Bayesian mode-
ling approach for data mining. The methodology was
applied on a hemodynamic problem in which the geo-
metric parameters affecting maximal wall shear stress
(MWSS) in the human carotid bifurcation were analyzed.
A design of experiments approach was employed to gen-
erate a set of geometries for numerical simulations using
a Navier-Stokes solver. The results obtained from these
runs were then used as training data to construct a Baye-
sian Gaussian process model. Applications of the resulting
emulator include (i) uncertainty quantification when the
inputs were modeled as random variables, (ii) the quanti-

fication of the sensitivity of an output quantity of interest
with respect to the input parameters, and (iii) the ability
of the model to predict geometries having low and high
values of maximal wall shear stress using the probability
of improvement criterion which can be subsequently used
for estimating degree of severity with respected to any
patient.

The work in this paper seeked to directly compare the
effect of varying the geometric parameters on the maximal
wall shear stress for the human carotid bifurcation. How-
ever, this metric only highlights the role of elevated shear
regions. Using the same principle, new metrics can be
used to correlate the regions of disturbed flow and sites of
arterial disease [31-34,59]. The main focus here was to
demonstrate the applicability of the Bayesian modeling
approach to mine data generated from hemodynamic
simulations. Physiologically more relevant results can be
obtained by considering the fluid-wall interactions and
non-Newtonian nature of blood along with more realistic
boundary conditions. More importantly, this analysis can
be carried out on any arterial location that is vulnerable to
hemodynamic derangements. Furthermore, new parame-
ters can be introduced into the CAD model that can sim-
ulate the presence of stents or grafts. Subsequently,
optimization studies can be performed on these cases that
can improve the design and control of these artificially
implanted devices [60-66]. We hope that the Bayesian
Gaussian process modeling methodology can be effi-
ciently integrated with well known image reconstruction
techniques to generate a powerful paradigm of designing,
optimizing and controling patient-specific blood flow
behavior.
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Appendix A
Construction of the parameterized CAD model
The parametric CAD definition for the Y-shaped model
used the junction between the inner walls of the ICA and
ECA as the origin and starting point of the construction.
Figure 1 depicts the complete definition. With reference to
Figure 11, first, lines OA and OB were drawn from the ori-
gin, O, for the ECA and ICA, respectively, that define the
orientations and the respective widths at the bifurcation.
Second, a perpendicular bisector, RR, to the ECA was used
to specify a number of downstream sections (e1 to e3 cor-
responding to the locations 5, 7 and 9 in Figure 1) each of
which possesses three parameters: a distance from OA, d;
a width, w and; a split ratio, r, defining the relative posi-
tion on RR. The endpoints of each section were then
joined by splines to define the inner and outer ECA edges.
Third, a similar procedure was followed for the ICA using

Γ̂m
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−( )
−( )
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Γ Γ
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a perpendicular bisector, SS, and sections (i1 to i5 corre-
sponding to the locations 12, 14, 16, 18 and 20 in Figure
1). Fourth, a line, OT, was drawn down from O, parallel
to the y-axis, and the CCA was defined by sections (c0 to
c3 corresponding to the locations 21, 23, 25 and 27 in Fig-
ure 1) specified by their distances from O, widths and split
ratios. It should be noted here that the lines referred to in
the description are only for construction purposes since it
is the coordinates of the end-points of each section that
were needed through which splines were drawn. subscript
'e' refers to the ECA). The split ratios were all assumed
equal to unity for the ECA and ICA sections and equal to
1.2 for the CCA section. Once the coordinates of all the
points were evaluated, splines were connected between
them with tangency constraints applied at each join. The
geometry thus generated is a two dimensional parametric
representation of a human carotid artery. To begin the
transformation from 2D into 3D, semi-circles were added
to the baseline geometry at the top and bottom of the
CCA, ICA and the ECA in order to facilitate lofting of the
outer surfaces. These semi-circles were defined parametri-
cally to allow the model to automatically update when
changes are made to the geometry definition. The artery
wall surfaces were then created by lofting elements of the
semi-circles along the edge boundaries for each artery
wall. Additional splines were added where appropriate to
assist the lofting of each surface. Constructed in this way,
parameters of the Y-shaped model can be simply manipu-
lated to control the complete shape. More details of the
parameterized CAD model can be found in [33].
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