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Abstract

Background: Information on anatomical connectivity in the brain by measurements of the
diffusion of water in white matter tracts lead to quantification of local tract directionality and
integrity.

Methods: The combination of connectivity mapping (fibre tracking, FT) with quantitative diffusion
fractional anisotropy (FA) mapping resulted in the approach of results based on group-averaged
data, named tractwise FA statistics (TFAS). The task of this study was to apply these methods to
group-averaged data from different subjects to quantify differences between normal subjects and
subjects with defined alterations of the corpus callosum (CC).

Results: TFAS exhibited a significant FA reduction especially in the CC, in agreement with region
of interest (ROI)-based analyses.

Conclusion: In summary, the applicability of the TFAS approach to diffusion tensor imaging studies
of normal and pathologically altered brains was demonstrated.

|. Background

Diffusion tensor magnetic resonance imaging (DTI) is
known to be an appropriate technique to map in vivo the
diffusion in human brain white matter (WM). The direc-
tional dependence of diffusion in each voxel can be char-

acterised by a 3 x 3 matrix called the diffusion tensor D .

The Eigenvectors and Eigenvalues of D reveal the diffu-
sivity of water in each direction and therefore can be used
to quantify the diffusivity by so-called fractional anisot-
ropy (FA) maps on a voxelwise basis. This orientational

information can also be the basis for the reconstruction of
the interconnectivity of brain regions by following the
pathways of the fibres. This technique is known as fibre
tracking (FT). The basis of FT is to connect neighboured
tensors consecutively along their principal directions.
Many techniques referring to this topic have been pub-
lished [1-5]. Most of them focus on qualitative imaging of
the FT, 3-D visualisation and judgement by experienced
operators. There have also been various efforts in using
diffusion anisotropy as a marker for white matter tract
integrity [6-8]. In these works, quantitative analysis has
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been performed by use of the underlying FA maps for
selective statistics.

Smith et al. developed an algorithm for an alignment-
invariant tract representation to overcome normalization
problems; this approach is referred to as tract based spatial
statistics (TBSS) [9-15]. In the present study, an analysis
technique named tractwise fractional anisotropy statistics
(TFAS) is presented. Hereby, bundles of FT are used in the
sense of a skeleton, which is the basis of statistical analysis
of the underlying FA maps. The novel character of TFAS is
that it uses averaged DTI data sets, i.e. the processing steps
of normalization and averaging are not performed on FA
maps but on one newly created group averaged DTI data
set. Based upon this data set, one FA map is calculated.
The definition of the region under observation is conse-
quently performed by anatomical connectivity. Whereas
the connectivity of white matter regions is neither under
investigation in region of interest (ROI)-based analysis
methods nor in whole brain-based statistical analysis
methods, TFAS was intended to analyse specific white
matter regions as well as their connecting pathways not
only in healthy brains, but also in distorted brain anat-
omy.

The prerequisite of statistical analysis at group level and
arithmetic averaging of subject data is the normalisation
to a standardised stereotactic space, e.g. the Montreal Neu-
rological Institute (MNI) space. MNI defined a new stand-
ard brain by using a large series of MRI scans of normal
controls, resulting in the MNI atlas [16]. MNI normalisa-
tion allows for arithmetic averaging of resulting FA maps.

FT with starting points in the corpus callosum (CC) was
used to build skeletons for consecutive statistical analysis.
The CC was chosen as the most appropriate structure in
the brain since it is one of the white matter structures with
an accumulation of mostly strongly directed fibres [17].
TFAS based on different skeletons was used to quantify
interconnectivity and to map differences between patients
with atrophy of the CC and age-matched healthy controls.
As a model of CC alteration, patients with complicated
hereditary spastic paraparesis (cHSP) were investigated.
This rare neurodegenerative disease was chosen as a pro-
totypical alteration across the whole structure of the CC.
These patients' brains frequently show a thinned CC
(tCC) [18,19]. Computer simulations that showed the
validity of the applied MNI normalisation algorithms and
the FT techniques complemented this work.

2. Methods

2.1. Data recording and subject population

DTI scanning protocols were performed on the same 1.5
T scanner (Symphony, Siemens Medical, Erlangen, Ger-
many). Six healthy controls (3 men, 3 women, average age
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32.7 + 4.5), and 6 patients with (tCC) (3 men, 3 women,
average age 32.5 + 12.1) underwent the MRI protocol.

All DTI acquisitions consisted of 13 volumes (45 slices,
128 x 128 voxel, slice thickness 2.2 mm, in-plane voxel
size 1.5 mm x 1.5 mm) representing 12 gradient directions
and one scan with gradient 0 (B,). Echo time (TE) and
repetition time (TR) were 93 ms and 8000 ms, respectively.
b was 800 s/mm2, 5 scans were k-space averaged online by
the Siemens SYNGO operating software. As a morpholog-
ical background, a T,-weighted magnetisation-prepared
rapid-acquisition gradient echo sequence was used
(MPRAGE, TR = 9.7 ms, TE = 3.93 ms, flip angle 15°,
matrix size 256 x 256 mm2, voxel size 1.0 x 0.96 x 0.96
mm3), consisting of 160-200 sagittal partitions depend-
ing on the head size.

2.2, Data processing

2.2.1. Eddy current correction

Large discontinuities in bulk magnetic susceptibility pro-
duce local magnetic field gradients that notoriously
degrade and distort DTI, particularly during echo-planar
imaging [20]. These eddy current induced geometric dis-
tortions vary with the magnitude and direction of the dif-
fusion sensitising gradients. For the correction of this
distortion, the method proposed by Shen et al. [21] was
applied. The technique relies on collecting pairs of images
with reversed diffusion sensitising gradients - these paired
images are distorted with eddy currents in opposite direc-
tions. A columnwise correction in the image domain
along the phase encoding direction (anterior - posterior)
was applied. This was performed by searching for the max-
imum value of the cross-correlation between two corre-
sponding columns (of two paired volumes) while one is
shifted and scaled (fitting routine: Simplex method [22]).
Each column was then corrected by applying opposite
shifts and scales equal to half of the correction. Other
techniques for the eddy current correction were described
in [23,24].

2.2.2. Transformation to iso-voxels and smoothing

As the recording technique provided voxels with non-iso-
tropic size (usually the slice thickness was larger than the
in-plane voxel size), the DTI data sets were transformed
into an isotropic grid with voxel size 1.0 x 1.0 x 1.0 mm?3
in the first step. The transformation chosen was a linear
nearest neighbour transformation with

. . 8
LagadirJ0)= Y a1, (L,m,m) (1)

where I, ., ., (i, ], k) was the voxel intensity at the new grid
coordinates i, j, k and I, m, n were the original voxel coor-
dinates in x, y, z direction, respectively. The factors a, were
the 8 weighting factors for the interpolation.
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Interpolation and smoothing are classical image process-
ing problems for which variety of methods exist [25-27].
Mishra et al. [26] developed the idea of an anisotropic
image interpolation method. Hereby, the kernel for inter-
polation was weighted by a factor depending on the local
gradients. Thus, the sharpness of the image remained pre-
served. For smoothing, we chose a Gaussian kernel, i.e. a
kernel sphere of radius 4 mm with Gaussian shape around
each voxel. This kernel was weighted with the local gradi-
ents by

N
ZVZII,;\SZ,m,ﬂ)/(T,, +gtarget) (2)

Zv=11/(r" + gtarget)

where 7, was the distance between I, ., ,,and I,, and g, ;g
was the absolute value of the gradient at position (i,j,k). In
this way, the local gradients weighted the interpolation
kernel with a sharpness dependency.

Itarget(i' j k)=

2.2.3. Template generation and spatial normalisation
Spatial normalisation allowed for arithmetic averaging of
the results obtained from different subjects in order to
finally perform a comparison of groups of patients with
certain disorders, e.g. neurodegenerative diseases, and
healthy subjects. Talairach and Tournoux [28] suggested a
transformation algorithm to a standard atlas involving the
identification of various brain landmarks and piecemeal
scaling of brain quadrants. An alternative approach was to
use automated brain registration algorithms [29,30]. In
the present study, a semiautomatic spatial normalisation
utilizing a study specific template was performed for the
transformation into MNI space. The template used for the
normalisation of the DTI data sets was created from all
subjects' (b = 0) data sets of the subjects who participated
in this study. The iterative algorithm has previously been
described in detail [31]. In short, a first template was gen-
erated by arithmetic averaging of the data sets after an aff-
ine transformation. Fitting of all data sets to this first
template using a non-affine transformation and arithme-
tic averaging led to the template. Then, single subject DTI
data sets could be normalised according to MNI dimen-
sions.

Basically, a complete non-linear MNI normalisation con-
sisted of 3 deformation components (DC):

e DC 1: A rigid brain transformation to align the basic
coordinate frames. Hereby, the rotation angles had to be

stored in a rotation matrix R.

http://www.biomedical-engineering-online.com/content/6/1/42

e DC 2: An affine deformation according to landmarks.
Hereby, the 6 stretching parameters for the different brain

regions had to be stored in a 6-D vector S .

¢ DC 3: A non-affine normalisation equalizing non-linear
brain shape differences. Hereby, the 3-D vector shifts were
different for each voxel resulting in a 6-D matrix (a 3-D

vector for each voxel of the 3-D matrix) T .

Consequently, the resulting diffusion tensor D; of each

voxel i had to be rotated according to all the rotations
listed above.

¢ Rotation resulting from the aligning to the basic coordi-
nate frame (corresponding to DC 1)

e Simple trigonometry gives a rotation matrix (for each
voxel independently), resulting from the 3-D vector shifts
following the basic ideas of Alexander et al. [32]. The dila-

tion matrices were used for the alignment of the tensor D
of each voxel to the surrounding voxels (corresponding to
DC 3).

D,"=i,-D;’ 4)

1 1

where ¢; are the components of T .

¢ The components of the Eigenvectors ( v;,V,,75 ) had to
be stretched according to the 6 stretching parameters of

vector S (dependent on the brain region s,, a = 1...6) of

the affine deformation (corresponding to DC 2).

v, " =80, " (5)

w, j aw, j

withw =1...3 and j = x, y, z. After the stretching, the Eigen-
vectors had to be re-normalised.

These fine-corrections of the tensor D were essential for
a correct FT (see section 4), and the corresponding param-
eters had to be stored for each subject data set independ-
ently. With the same normalisation procedure (without
fine-corrections), the corresponding MPRAGE were nor-
malised.
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2.2.4. Analysis methods — FA mapping and averaging of FA maps for
different subjects

The second-rank diffusion tensor 1:) could always be
diagonalized, leaving only three non-zero elements along
the main diagonal of the tensor, the Eigenvalues (4,, 4,,
A5). The Eigenvalues reflected the shape or configuration

of the ellipsoid. The diffusion anisotropy could be quan-
tified by the fractional anisotropy:

(M-2)2+(Ap 1) +(23-2)?

(6)
2 2 2
11+/12+/13

Ff:

where 1 was the average of all Eigenvalues.

The intensity was related to the FA and the colour-coding
was as follows: red for major Eigenvector mainly in left-
right direction, blue for major Eigenvector mainly in infe-
rior-superior direction and green for major Eigenvector
mainly in posterior-anterior direction.

A ROI-based approach of defined brain regions was the
method of choice for the analysis of separate areas. A ROI
was defined by a sphere with an observer-defined radius r,

and its centre at the user-defined focus fs . All FA values F;

of the N voxels inside this sphere (position v;) were

included in the following parameterisation. The ROI anal-
ysis included the following parameters:

e average FA, i.e. average diffusion strength

1
- N 21{?‘]?5—171' ‘<rs fi

(7)

avg

¢ standard deviation of averaged FA

2
Fgyq = \/[\sz‘]fs_ai‘qs(ljavg_lgi) (8)

where N was the ROI size. Extensive studies via ROI anal-
yses about the preservation of the DTI specific parameters
during the process of MNI normalisation were performed
previously [31].

Group studies might be of interest if the common deficit
was due to damage of one or more defined brain areas.
For this task, averaging of results for different subjects was
necessary. After all subjects' data had been transformed
into MNI space, averaging of the results was feasible. The
latter step could be performed in three ways:

http://www.biomedical-engineering-online.com/content/6/1/42

¢ The FA map was calculated separately for each subject
data in MNI space, followed by arithmetic averaging of
the FA maps. This led to a group-specific FA map FAM1.
Hereby, the drawback was that the directional informa-
tion was lost, quantification and analysis was performed
via the FA maps.

e Diffusion tensor D matrices were stored after fine-cor-
rection and an averaged diffusion tensor matrix was cre-
ated. This method required 600 Mbyte for each subject
and increased computation time inadequately and thus
was practicable only for studies with small populations.

e Each DTI data set was normalised and the whole DTI
data sets were averaged before FA mapping. FA parameter-
isation of these group-averaged DTI data led to a group-
specific FA map FAM?2. The fine corrections were also
arithmetically averaged. This resulted in an averaged fine
correction to be applied to the resulting averaged DTI data
set.

The third approach could be applied if the evidence that
the FA values were preserved and also the orientational
dependence of the Eigenvectors were preserved. ROI anal-
ysis had already shown that FA values were preserved by
MNI transformation [31]. In section 4, a short excursion
to computer simulation should give evidence that the ori-
entational information could be preserved if fine correc-
tions were applied.

2.2.5. Fibre tracking

For FT, anisotropic diffusion was characterised to deter-
mine the preferred diffusion direction. In the calculation
of the diffusion spheroid, the Eigenvector corresponding
to the largest Eigenvalue was the direction of fastest diffu-
sion and indicated the fibre direction in white matter
regions. Based on this directional information, different
methods and algorithms had been proposed to estimate
white matter connectivity. In this work, the conservative
streamline tracking technique (STT) was used. STT mod-
elled the propagation in the major Eigenvector field of the
brain [20,33].

Generally, the FT positions resulted from float numbers.
The corresponding Eigenvector direction (to obtain the
consecutive FT position) was the interpolation of the
directions of the neighboured voxels weighted by the pro-
portionate position (linear nearest neighbour interpola-
tion)

8
Dol = ) auillymymny) ()
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Here, v,,,(i, j, k) was the resulting vector at the new posi-

tion i, j, k (float numbers), and I, m, n were the voxel coor-
dinates (integer numbers) of the 8 neighboured voxels.
The factors a,, were the respective 8 weighting factors for

the interpolation.
The following set of parameters was used for FT:

¢ The threshold for the scalar product of the major Eigen-
vectors (angle between directions of two consecutive FT
positions and the first Eigenvector directions) was set to
0.95.

e The distance between two FT positions, i.e. the step-
width, was set to 0.5 mm, corresponding to 0.5 voxels.

All the analyses were performed by the newly developed
software package TIFT (Tensor Imaging and Fibre Track-
ing) [31]. TIFT provides various quantification and visual-
isation possibilities for DTI analysis. The structure of the
software aims at minimisation of operator-dependency
providing analysis in a fast and reproducible way.

2.2.6. Tractwise fractional anisotropy statistics (TFAS)

Beside ROI analysis statistical comparison between sub-
ject groups could also be performed defining a skeleton
which then was used for the selection of voxels that con-
tribute to the statistics. FT was used to define such skele-
tons. When FT was performed on averaged DTI data, each
voxel that is crossed by a FT was defined as 'active' for sta-
tistics. Basically, two skeletons could be built:

¢ A skeleton based on FT in averaged normal subject data
(skeleton 1). The skeleton followed well known paths and
was not disturbed by neuroanatomical alterations.

e A skeleton based on FT in averaged tCC subject data
(skeleton 2). This skeleton was only under consideration
for the sake of completeness.

In analogy to Equations 7 and 8, average FA and standard
deviation were calculated:

F =%21NF,-, YV wvoxel ie skeleton  (10)

avg

2
Foq = \/ ﬁ ZlN ( Fal}g—Fi ) , VY wvoxel ie skeleton
(11)

where N was the respective skeleton size, which usually
was different for different skeletons. Then, TFAS used F,,,
and F,,; for statistical t-test.

http://www.biomedical-engineering-online.com/content/6/1/42

2.2.7 Statistical analysis
Statistical analysis (SA) by use of Student's t-test was per-
formed in two ways:

SA1: skeleton 1 was applied to FA maps of the individual
subjects. Alternatively, skeleton 2 was applied to FA maps
of the individual subjects.

SA2: skeleton 1 and 2, respectively, were applied to the FA
maps of the averaged DTI data sets. Hereby, the variability
was calculated along the skeleton, so this approach is not
an analysis of the group variability.

3. Results

3.1. Fibre track simulations

Since FT is known to be affected by MNI normalisations,
the algorithms were tested on a 2-D simulation scenario
consisting of a circle band with an inner radius of 64 vox-
els and an outer radius of 74 voxels. FA values were kept
constant, and Eigenvectors pointed perpendicular to the
radius vector (Figure 1a). Figure 1b shows FT results in the
circle. In the second step, a deformation, i.e. a compres-
sion with a factor of 1.4, was performed (Figure 1c). If the
diffusion tensor and the corresponding Eigenvectors were
not corrected, FT failed (Figure 1c), whereas the correction

Figure |

DTI simulations: (a) Circle simulation with inner radius of 64
pixels and outer radius of 74 pixels. (b) Corresponding fibre
tracking (FT) results (light yellow). (c¢) Compression with a
factor 1.4 destroys the FT (light yellow). (d) Correction of
the Eigenvectors restored correct FT results (light yellow).
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of the Eigenvectors according to section 3.3 provided cor-
rect FT results (Figure 1d).

3.2. Differences between patients with tCC and controls
As an example of a disorder with a presumable affection
of white matter tracts, patients with tCC were chosen. The
CC was considered an important structure to investigate
since a multitude of strongly directed fibres (connecting
the hemispheres of the brain) is clustered in its formation.
DTI should be able to detect axonal loss or at least damage
of oriented white matter regions such as the CC.

3.2.1. Fractional anisotropy mapping

Averaged FA maps were calculated with method FAM1.
Whole brain based spatial statistics, i.e. voxelwise compar-
ison of 6 FA maps from healthy controls and 6 FA maps of
tCC patients by Students t-test resulted in Figure 2. Dis-
play p-value threshold was p < 0.05, significant differ-
ences were especially found in the CC. Five seeds in the
CC were selected for the following analysis (Table 1). The
seeds with high significance acted as centres for the fol-
lowing FT based TFAS analysis. ROI analysis of several
regions in the CC gave the results listed in Table 2. Signif-
icant differences were found in 4 of the 5 seeds, whereas
the ROI analysis of seed 5 was not significant.

3.2.2. Fibre tracking on single subjects

For comparison of the single subjects, FT was performed
for all 12 subjects participating in the study (Figure 3).
Healthy controls FT's looked very similar among each
other and also similar to the FT from the averaged data set
whereas in tCC patients FT failed due to a reduction of the
averaged FA value at the ROI around the starting point of
the FT below 0.05.

3.2.3. Tractwise fractional anisotropy statistics

It was shown previously by ROI analyses that MNI nor-
malisation preserves quantitatively FA values [31]. As
demonstrated by the simulations in section 3.3, orienta-
tional dependencies of FT could also be preserved if the
necessary fine-corrections were taken into account. Thus,
if magnitude and orientation could be preserved, the aver-
aging method FAM2 could be applied (Figure 4). Then,
two averaged DTI data sets, one representing the 6 con-

Table I: MNI coordinates of seeds in the corpus callosum (CC)

http://www.biomedical-engineering-online.com/content/6/1/42

trols with normal CC structures and one representing the
6 tCC patients, were generated, and FT could be applied.

Taking the five seeds in the CC as starting points (follow-
ing basically [17]), FT analysis led to results as displayed
in Figure 5. FT results for the data set which represented
the tCC patients (Figure 5b) showed a reduction com-
pared to the data set which represented the healthy con-
trols (Figure 5a). Therefore, several skeletons were used
for the following TFAS analysis (see section 2.6.6)

¢ TFAS with skeleton 1: FT from healthy controls
¢ TFAS with skeleton 2: FT from tCC patients

When skeleton 1 was applied to FA maps of the individual
subjects (SA1), averaged FA value for all healthy subjects
was 0.34 + 0.04 and averaged FA value for all tCC patients
was significantly reduced to 0.25 + 0.06 (p < 0.01) (Table
3, upper panel). By application of skeleton 2, results were
very similar to the results for skeleton 1. Averaged FA
value for all healthy subjects was 0.39 + 0.03, averaged FA
value for all tCC patients was significantly reduced to 0.26
+0.07 (p <0.01) (Table 3, lower panel).

When skeleton 1 and 2, respectively, were applied to the
FA maps of the averaged DTI data sets (SA2), TFAS
showed a significant FA reduction independent of the
skeleton applied. The averaged FA values for healthy con-
trols were about 0.3 for all skeletons, and the averaged FA
values for the tCC patients were significantly reduced to
about 0.2 for all skeletons (p < 0.001). These results are
listed in Table 4.

4. Discussion

With respect to the direction of fibres, the hypothesis
could be set up that FT should give similar results for nor-
mals and patients with CC thinning. Nevertheless, it was
shown that DTI and consecutive FT failed in some patients
due to low FA values. Changes in orientational dependen-
cies (FT) between the normal group and the tCC group
were not related to changes in the diffusion direction;
moreover, the low values in DTI (as detected by low FA
values) led to errors in the diffusion tensors, and thus the
orientational dependency was lost. To overcome this

x/mm y/mm z/mm
seed | 0 23 8
seed 2 0 15 23
seed 3 0 -9 36
seed 4 0 =31 29
seed 5 0 -44 16
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Table 2: Region of interest (ROI) analysis of fractional anisotropy (FA) maps with radius 5 mm at seeds in the corpus callosum (CC)

FA (normals) FA (tCC) p
seed | 0.61 £0.13 0.19 + 0.04 <0.001
seed 2 0.40 £ 0.14 0.12 £ 0.0l 0.02
seed 3 047 £ 0.13 0.13+£0.03 0.004
seed 4 043 +0.13 0.20 + 0.04 0.06
seed 5 0.53+£0.13 0.48 £ 0.05 0.67

problem by improving the signal-to-noise ratio, averaging
of DTI data from patients with a similar pattern of brain
alterations was performed.

ROI analysis had already shown the preservation of FA
values after MNI normalisation [31], whereas preserva-
tion of the orientational dependency during MNI normal-
ization is feasible (as shown by computer simulations).
Therefore, averaging of DTI data sets was considered to be
allowed. Although the drawback of the averaging method
(fine-corrections are averaged and thus could only par-
tially be taken into account), the averaged DTI data set
showed meaningful results for the FT. For the averaged
data sets, the FT pattern looked more similar for controls
and patients with tCC than the comparison of single sub-
ject data sets.

By application of tractography methods in order to obtain
connectivity-based functional brain regions, as proposed
by Behrens et al., region-specific FA analysis becomes fea-
sible [6]. In addition to ROI- and whole brain-based anal-
ysis, this method takes the interconnectivity of brain
regions into account. In the present study, TFAS was

coronar

Figure 2

sagittal

applied to skeletons which had been derived from differ-
ent subject groups including patients with distorted brain
anatomy. Here, the tractwise FA statistics again seemed to
be superior to standard FA analysis methods due to its
functional specifity.

It has to be kept in mind that averaging of DTI data sets
was only possible if the deformations necessary for MNI
normalisation were minor. Problems in cortical regions
could occur as already reported by [32,31]. Although the
FA values of the averaged DTI data sets were reduced by
about 20 % due to the averaging process, the differences
remain statistically significant for each of the statistical
analysis methods.

5. Conclusion

In order to perform the analysis methods described in this
study, a software platform was needed that was able to
perform all the analysis at group level in a fast, reproduc-
ible and concise way, and the TIFT software contains all
prerequisites for analysis performed in this work. At group
level, the resulting averaged DTI data sets showed reduced
FA maps as well as a reduction of FT for patients with tCC

Whole brain-based spatial Students t-test on a voxelwise basis. Comparison of fractional anisotropy (FA) maps of 6 normal
controls and 6 subjects with thinned corpus callosum (tCC). Display threshold was p < 0.05. The results were overlaid on an
MPRAGE template (averaged from all 12 subjects who participated in the study).
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Figure 3

Fibre tracking (FT) with starting seeds in the corpus callosum (CC) (cf. Table 1): (a) 6 healthy controls (Cl — Cé). (b) 6 sub-
jects with thinned CC (tCC) (P| — P6). The images are glass-brain plots of FT and the averaged MPRAGE data set. For the
patients with tCC, not all possible seeds could be used for FT because the fractional anisotropy (FA) values were <0.05.

Figure 4

Fractional anisotropy (FA) maps for averaged data sets: (a)
healthy controls, (b) thinned corpus callosum (tCC) sub-
jects. Display threshold was FA > 0.2. The results were over-
laid on an MPRAGE template (averaged from the 12 subjects
participating in the study).

Figure 5

Fibre tracking (FT) with starting seeds in the corpus callosum
(CQ) (cf. Table 1): (a) averaged DTI data set from 6 normal
subjects, (b) averaged DTI data set from 6 subjects with
thinned CC (tCC). The images are glass-brain plots of FT
overlaid on the averaged MPRAGE data set.

Page 8 of 10

(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:42 http://www.biomedical-engineering-online.com/content/6/1/42

Table 3: Tractwise fractional anisotropy statistics (TFAS) with different skeletons, based on the 5 seeds in the corpus callosum (CC)
(according to Table I).

skeleton |
FA (normals) FA (tCC)
subject | 0.37 0.19
subject 2 0.40 0.32
subject 3 0.32 0.22
subject 4 0.32 0.16
subject 5 0.31 0.31
subject 6 0.33 0.27
average 0.34 £ 0.04 0.25 + 0.06

t-test: p < 0.01

skeleton 2
FA (normals) FA (tCC)
subject | 0.40 0.20
subject 2 0.43 0.36
subject 3 0.40 0.22
subject 4 0.35 0.17
subject 5 0.36 0.31
subject 6 0.38 0.28
average 0.39 £ 0.03 0.26 + 0.07

t-test: p < 0.01

Table 4: Tractwise fractional anisotropy statistics (TFAS) with different skeletons, based on the 5 seeds in the corpus callosum (CC)
(according to Table I).

FA (normals) FA (tCC) p
skeleton | 0.28 £ 0.18 0.17 £0.09 <0.001
skeleton 2 0.33£0.19 0.17 £0.09 <0.001
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in comparison to healthy controls. Although the skeletons
were different in localization and size, the result of a sig-
nificant reduction of FA values, as calculated by TFAS in
controls compared with tCC patients, was independent of
the skeleton. Thus, TFAS seemed to be a probate way to
measure differences at group level in groups of subjects
with a groupwise similar pattern of brain alterations.
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