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Abstract
Background: The first stage in computerised processing of the electrocardiogram is beat
detection. This involves identifying all cardiac cycles and locating the position of the beginning and
end of each of the identifiable waveform components. The accuracy at which beat detection is
performed has significant impact on the overall classification performance, hence efforts are still
being made to improve this process.

Methods: A new beat detection approach is proposed based on the fundamentals of cross
correlation and compared with two benchmarking approaches of non-syntactic and cross
correlation beat detection. The new approach can be considered to be a multi-component based
variant of traditional cross correlation where each of the individual inter-wave components are
sought in isolation as opposed to being sought in one complete process. Each of three techniques
were compared based on their performance in detecting the P wave, QRS complex and T wave in
addition to onset and offset markers for 3000 cardiac cycles.

Results: Results indicated that the approach of multi-component based cross correlation
exceeded the performance of the two benchmarking techniques by firstly correctly detecting more
cardiac cycles and secondly provided the most accurate marker insertion in 7 out of the 8
categories tested.

Conclusion: The main benefit of the multi-component based cross correlation algorithm is seen
to be firstly its ability to successfully detect cardiac cycles and secondly the accurate insertion of
the beat markers based on pre-defined values as opposed to performing individual gradient
searches for wave onsets and offsets following fiducial point location.

Background
Computerised classification of the electrocardiogram
(ECG) is a complex and multi staged process. The overall
goal is to determine if the patient is 'normal' and may
remain untreated, or whether the patient exhibits any car-
diac abnormalities requiring treatment. The classification

of the ECG by computerised techniques has been an active
area of research for more than 4 decades. A plethora of
algorithmic techniques have been applied and developed
[1,2] all with the common goal of enhancing the classifi-
cation accuracy and becoming as reliable and successful as
expert cardiologists. The process can be divided into a
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number of sequential stages. Pre-processing stages of Beat
Detection and Feature Extraction/Selection provide suita-
ble information from the recorded ECG in the form of a
digitised feature vector [3]. This can be considered to
describe the current morphology of the recorded signal,
hence, following processing by the classification algo-
rithm [1,2], a set of suggestive diagnostic statements can
be produced.

With a multi-stage computerised approach, the overall
classification capabilities of the system are highly depend-
ent on the early stages of processing, i.e., accurate detec-

tion of each ECG complex in all recorded leads. Hence the
necessity of a reliable beat detection algorithm is of para-
mount importance. Regardless of the approach employed
to analyse and classify the ECG signal, all require accurate
detection of each QRS complex. Beat detection algorithms
are designed with two main objectives. Firstly, the algo-
rithm employed should provide reliable detection of each
cardiac cycle. Secondly, the temporal location of the refer-
ence points should be described accurately. In general
terms detection of each cardiac cycle involves the location
of a fiducial point, usually taken as the peak amplitude of
the R-wave or of the QRS complex. From this it is then

P wave, QRS complex and T wave beat markers inserted into ECG recordingFigure 1
P wave, QRS complex and T wave beat markers inserted into ECG recording.
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possible to detect markers for the other interwave compo-
nents (if present) and features of the ECG; QRS onset and
offset, P onset and offset and T offset (Figure 1).

Two of the most commonly employed approaches to beat
detection involve the use of established non-syntactic
algorithms [3-5] or cross correlation (CC) algorithms
[3,6]. A brief overview of each approach follows.

Non-syntactic beat detection
A non-syntactic approach to beat detection normally
involves an algorithm based on two distinct steps; a pre-
processor and a decision rule. The function of the pre-
processing stage is to enhance the QRS complex and sup-
press all other components of the recorded signal i.e. P
and T waves and noise artefacts. This is achieved through
firstly applying a linear filter to extract the required fre-
quencies, followed by a non-linear transformation with
the goals of providing a single positive peak for each QRS
complex. The output from the non-linear transformation
is then processed by a thresholding function to indicate
the presence or absence of a QRS complex. Following
location of a reference point remaining inter-wave com-
ponents can be located to the left (P wave) and the right
(T wave) of the QRS complex.

A number of non-linear transformations exist which can
be applied and can occur in a number of different permu-
tations. A commonly adopted approach is conceptualised
in Figure 2. The primary stage of bandpass filtering
(approximately 5–25 Hz) reduces the noise artefacts that
may be present in the signal. Detection of the fiducial
point need not necessarily occur on the original signal,
but can be considered advantageous once some signal
transformations have been applied, hence the inclusion of
the differentiator, squaring function and moving window
integrator. The differentiation stage acts as a highpass
filter, exploiting the slope characteristics of the QRS com-
plex. The squaring function is also favourable to the high-
frequency components of the signal and serves the pur-
pose for signal rectification. The integrator includes infor-
mation relating to the duration of the QRS complex,
which is recognised in electrocardiography as normally
having the longest duration of any component in the
ECG. QRS complexes cannot occur physiologically closer
than 200 ms in succession. Therefore it is common prac-
tice once a QRS complex is detected, that a 200 ms refrac-
tory blanking period is initiated. This eliminates the
condition where the same QRS complex is detected twice
or even a T wave is mistaken for a QRS complex. (For a
more detailed review of studies applying non-syntactic
beat detection see [3].)

Cross Correlation based beat detection
The CC function can be used to measure the similarities
between two signals [7]. This process entails the computa-
tion of the sum of the products of corresponding pairs of
points of two signals, within a specified time frame, or
window. The process also takes into consideration any
potential phase differences between the two signals via
the inclusion of a lead or lag term. The formula for CC is
represented as:

where N represents the number of samples, j is the lag fac-
tor and x1 and x2 are the two signals. To normalise the
results based on the number of sample points, the factor
1/N is introduced. When the value of r(12) is maximal, this
is considered as the point of maximal similarity between
the two waveforms. As the required amount of lagging
between the two signals is initially unknown, various
degrees of lags within the specified correlation interval
must be performed.

It is possible to use CC for the purposes of beat detection,
by locating the point of maximal similarity between an
ECG signal and a predefined template and hence identify-
ing the temporal location of the QRS complex. It is also
necessary for the CC algorithm to store a template or a ref-
erence signal of the ECG signal. The origin of the template
may be from a variety of sources. It may be of an adaptive
nature, whereby a section of the patient's recorded ECG is
averaged and stored prior to the analysis. Alternatively, a
mathematical model may be used or a collection of ECG
recordings from a database used to produce a generic
template.

Many studies in the past have successfully reported the use
of CC as a means of automated beat detection. Abboud et
al. [6] used the CC function, calculated using the cross
spectrum and fast Fourier transform algorithm for extras-
toyle rejection and location of fiducial points. Variations
to the CC algorithm have also been successfully reported.
These were considered to be more computationally effi-
cient as they do not require the intense multiplicative
processes associated with CC, but may be based on for
example weighted correlation of differences methods [8]
and average magnitude cross difference methods [9].
Methods of CC have generally focused on the usage of one
waveform as the basis for the template, for example the
QRS complex. The algorithms of Abboud et al. [6] were
adapted by Govrin et al. [10] to facilitate the location via
CC of both the P waves and QRS complexes. Templates of
both waves were used with unknown ECG traces to iden-
tify the individual components of each cardiac cycle.
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It is the aim of the current study to investigate the poten-
tial of adapting the general CC based approach as an accu-
rate and reliable means for beat detection. This approach
in the past has been shown to be successful and hence is
investigated with the aims of further enhancement. Indi-
vidual templates for P waves, QRS complexes and T waves
are generated and the CC approach applied individually
to identify each of these components as opposed to a one
template CC based approach. Standard approaches have
also been developed for benchmarking purposes.

The structure of the remainder of the paper is as follows:
Section 2 describes the new beat detection method based
on the fundamentals of CC. In addition a description of
the benchmarking methods developed are also presented.
Section 3 describes the structure of the data set and
presents the results and discussions for the beat detection

algorithms. Final conclusions to the study are presented in
Section 4.

Methods
The aims of the current study were to investigate the pos-
sibilities of developing a new approach to beat detection
which would offer enhanced accuracy and reliability in
comparison to established techniques. Two different
approaches, one based on a standard non-syntactic
approach and one based on a standard CC approach were
developed for the purposes of benchmarking. Develop-
ments of both of these algorithms were based on existing
published approaches. A new approach, based on a multi-
component based CC algorithm was additionally devel-
oped. Details of the 3 beat detection approaches are as
follows.

Non-syntactic non-linear transformations transforming original ECG signal into a series of impulse like outputsFigure 2
Non-syntactic non-linear transformations transforming original ECG signal into a series of impulse like outputs.
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Non-syntactic approach
The first stage of the non-syntactic approach is the inclu-
sion of a bandpass filter, centred at 17 Hz. The purpose of
this is to isolate the predominant QRS energy and attenu-
ate the low-frequency characteristics of the P and T waves,
any baseline drift present and the higher frequencies asso-
ciated with electromyographic noise and power line inter-
ference [11]. (The passband that maximises the QRS
energy is approximately in the 5–25 Hz range.) An FIR
bandpass filter was implemented with the difference
equation expressed in Equation 2:

where yi is the filtered output sequence, xi is the input ECG
signal and bq represents the coefficients calculated with the
Remez exchange design algorithm [12]. To produce the
necessary stage of differentiation, a five-point derivative
with the second term equal to zero (as represented in
Equation 3) was employed.

H(z) = 0.1(2 + z-1 - z-3 + 2z-4)  (3)

This has been chosen as the function H(z) in Equation 3
behaves in a similar manner to a parabolic smoothing fil-
ter and does not amplify any high-frequency noise. The
advantage of such a filter is that it goes to zero at half of
the sampling frequency. The non-linear transformation is
performed by the point-by-point squaring of the signal
samples. This derivative approximates an ideal derivative
in the dc through to 30 Hz frequency range. This is the
necessary frequency range since all higher frequencies are
significantly attenuated by the bandpass filter. Finally, the
squared waveform is passed through a moving window
integrator. A window integrator with the difference equa-
tion as presented in Equation 4 was employed.

where N is the number of samples in the width of the
moving window. The integrator sums the area under the
squared waveform over an approximate 180 ms interval,
advances one sample interval and integrates a new 180 ms
window.

To locate the fiducial point, the maximum of the QRS
complex is required. Following application of the afore-
mentioned processes to the recorded signal, the maxi-
mum amplitude of the resultant signal is sought. An
initial threshold value based on 80% of the maximum
amplitude located during an initial training period is used
to locate potential QRS complexes. Within a 125 ms win-
dow, following exceeding this value, the maximum ampli-
tude located is considered to be the fiducial point. A

refractory blanking stage of 200 ms is employed prior to
repeating the process for the next cardiac cycle. The mark-
ers for the onset and offset are inserted following gradient
searches to the right and left of the fiducial point within a
window of 200 ms on each side. A thresholding technique
was exercised, whereby following the location of 6% of
the gradient, for a duration of at least 25 ms, to the left
and right of the fiducial point the start and end points
were identified respectively.

Prior to location of the T wave offset, the original signal
was low-pass filtered at 12 Hz in an effort to maximise the
frequency content of the T wave whilst suppressing the
remaining inter-wave components. With knowledge of
the end of the QRS-complex and the beginning of the next
adjacent QRS-complex a value of the peak of the T wave,
i.e. the maximum value within the identified window,
was calculated. The T-offset is located based on a gradient
descent thresholding search method. The condition of
thresholding was set at 25% of the maximum gradient of
the T wave, for a duration of at least 25 ms, to the right of
its peak.

Following filtering and smoothing, the P wave was sought
in a window of 300 ms prior to the QRS onset. Similar to
the T wave offset location, the maximum (or peak) is
located within the defined window prior to the location of
the onsets and offsets. The onset is located following
detection of 75% of the maximum gradient, for a duration
of at least 25 ms, to the left of the peak and the offset is
located following detection of 75% of the maximum gra-
dient, for a duration of at least 25 ms, to the right of the
peak.

CC approach
The necessary templates required for the CC were gener-
ated during an initial training stage prior to any CC based
analysis. During this stage templates required on an indi-
vidual lead-per-lead basis were generated by averaging
cardiac cycles in the initial section of the patient's ECG
recording. This requirement for a training stage generally
results in CC based approaches being more suitable for
ambulatory processing situations, for example Holter
recordings, as opposed to analysis of short term rest ECGs.
Given that infinite signals are to be analysed, the CC func-
tion for a lag k can be defined as in Equation 5:

where the correlation coefficient is defined as:
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where z can be set to either x or y. The CC approach is only
used to detect the fiducial point. The signal is cross
correlated with a complete PQRST template. The correla-
tion function calculates a number of correlation coeffi-
cients and returns the position of the highest value.
Providing this value is greater than a predefined thresh-
old, a QRS is deemed detected. The threshold value can be
changed for each signal and template, if required. This
ensures adaptability to each individual patient's
recording.

The QRS onset and offset as well as the P wave onset and
offset and T wave offset are detected with similar rule-
based gradient search techniques as described in the non-
syntactic approach in the previous section. The main dif-
ference being that the search windows in which the gradi-
ent searches are performed are dependent upon the
distances specified in the template with which the ECG
signal is cross correlated.

Multi-component based CC algorithm
With the proposed multi-component based CC detection
method, separate templates for each interwave compo-
nent are used. Each template consists of an individual
component of the complete cardiac cycle, detailing accu-
rate marker positions for the respective inter-wave compo-
nent onset and offset. In the given approach, 3 templates
were employed, one for the P wave, one for the QRS com-
plex and one for the T wave (Figure 3).
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An example of templates used by the multi-component based CC approach for (a) P wave (b) QRS complex (c) T waveFigure 3
An example of templates used by the multi-component based CC approach for (a) P wave (b) QRS complex (c) T wave.
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The detection method is based purely on CC and is struc-
tured into a number of procedural steps as shown in
Figure 4. The CC function employed in all steps is as
described in Equation 5. The only difference is that for
each interwave component sought, differing templates are
used within the algorithm. The first step of the process is
concerned with the location of the QRS complex. With
this process, a QRS template is cross correlated with the
ECG signal. The next step is the detection of the P wave,
which is performed using the same CC function, but in
this case, the template is representative of the patient's P
wave. The last stage involves the detection of the T wave.
In this process, a template, representative of the patient's
T wave is cross correlated with the ECG signal using the
same CC function as with the previous 2 steps.

In each case the value indicated as being the point of max-
imum similarity, i.e. the highest correlation coefficient,
between the ECG and the template, within the given cor-
relation interval is compared with a pre-defined thresh-
old. The threshold level, used to initially locate the peak
amplitude can be varied in the algorithm if required and
is established during a pre-learning phase. If the ampli-
tude of the value exceeds the threshold, a waveform detec-
tion is considered as having occurred, otherwise the
process is repeated with a new portion of the signal. Mark-
ers for the QRS onset, QRS offset, P wave onset and P wave
offset, as well as the T wave offset form part of the tem-
plates used during the CC process. Hence as soon as the
individual interwave components are detected, the mark-
ers are generated automatically based on the templates
used with no requirement to perform any means of gradi-
ent based searching.

Basic structure of the multi-component based CC detection method using 3 separate templatesFigure 4
Basic structure of the multi-component based CC detection method using 3 separate templates.
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Results and Discussion
To examine the efficiency of the algorithms, excerpts from
the already established QT database were employed [13].
This database has been designed specifically for the
evaluation of algorithms which detect waveform bounda-
ries in the ECG. The database has approximately 100
records, each record consisting of 15 minute excerpts of
two-channel digitised ECGs. The recordings were chosen
to include a broad variety of QRS and ST-T morphologies.
The records within the QT database were chosen from the
MIT-BIH database, the European ST-T database and sev-
eral other ECG databases collected at Boston's Beth Israel
Deaconess Medical Centre. For each record, a minimum
of 30 beats have been manually annotated by clinical
experts. For each annotated beat, the following markers
have been inserted; P wave onset, P wave offset and P
wave peak amplitude, QRS onset, QRS offset and QRS
peak amplitude and T wave offset and T wave peak ampli-
tude. For the purposes of the given study, each algorithm
was exposed to 3000 beats from this database.

Comparison of beat detection algorithms
To quantify the accuracy of each of the three aforemen-
tioned beat detection algorithms in terms of their correct
positioning of beat markers, measurements of mean error
(me) and standard deviation (SD) of this error were used.
The me value is used to determine how close the detector
is to the annotated markers, with the SD value providing
information relating to the stability of the detection crite-
ria. For the purposes of validation, the database used for
testing [13] has associated with it a set of tolerance values
for each of the beat markers. These measures can be con-
sidered to be the minimum values that should be expected
with any automatic algorithm. The accuracy with which
the automated algorithms performed the detection was
compared with manually annotated and clinical validated
beat markers. Such comparisons with a gold standard and
subsequently with other automated approaches operating
on the same data sets adhere to recommended approaches

of comparison of automated medical decision support
systems [14].

Average values for the SD (Equation 6) of the me can be
generated with the following equation:

Where xid is the detected marker position for ECG trace i as
identified by the algorithms used and xim is the original
stored marker position from the database annotated by
experts for ECG trace i.

Table 1 shows the performance of each of the algorithms
in detecting the 3000 cardiac cycles from the test set. Table
2 indicates the performance of each of the algorithms in
comparison with the accepted tolerances for marker
insertion.

In terms of the overall accuracy in detecting cardiac cycles,
as shown in Table 1, the multi-component based CC
approach provided the best results. The advantages of
considering only the QRS complex during the CC process
offers an improvement in detection of each cardiac cycle.
It can be considered that the PQRST wave poses a more
complex situation to achieve an accurate measurement of
maximum similarity during the correlation process than
with a template which only represents the QRS portion of
the ECG.

Table 1: Results of performance following exposure to 3000 
cardiac cycles for each algorithm.

Non-
Syntactic

CC Multi-component 
based CC

Number of QRS detected 
out of possible 3000

2850 2799 2931

SD
N

x xid im

N
= −( ) ( )∑1

62

1

Table 2: Results of marker accuracy following exposure to 3000 cardiac cycles for each algorithm.

Marker Tolerance SD ms Non-Syntactic SD ms CC SD ms Multi-component based 
CC SD ms

P-onset 10.2 22.6 22.1 11.9
P amplitude 23.4 23.8 7.8

P-offset 12.7 16.7 19.7 11.6
QRS-onset 6.5 10.4 10.1 6.6

QRS amplitude 14.3 1.8 1.8
QRS-offset 11.6 12.8 13.1 6.9
T amplitude 19.2 21.4 8.2

T-offset 30.6 18.7 20.6 14.6
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(page number not for citation purposes)



BioMedical Engineering OnLine 2004, 3:26 http://www.biomedical-engineering-online.com/content/3/1/26
Considering the accuracy with which the three algorithms
were able to detect the correct position for the marker
insertion as shown in Table 2 indicates that the multi-
component based CC approach outperformed the two
benchmarking algorithms in 7 out of the 8 marker inser-
tion positions. In the remaining case (QRS amplitude) the
multi-component based CC achieved a similar SD of 1.8
ms with the traditional CC approach. The non-syntactic
and CC approaches performed to a similar level with the
former providing superior results in 5 out of the 8 marker
values. The SD values, however, only differ slightly. This
can be considered to be the result of both techniques
using a similar approach of gradient descent searching to
identify onsets and offsets. The difference in the results
can be attributed to the different manner in which each
technique defines the search window within which the
gradient searching is performed.

The increased accuracy of marker insertion of the multi-
component based CC approach can be attributed to a
number of factors. The major factor being the avoidance
of any gradient searching techniques for the marker posi-
tioning as is required by the two benchmarking
approaches. As the multi-component based CC approach
has pre-defined marker positions in-built as an inherent
feature of its design, the ability to detect the fiducial point
accurately is the most important process the algorithm
initially undertakes. Following this process, markers are
inserted based on the values stored within the templates
used during the correlation process. Methods used in the
two benchmarking techniques of gradient searches are
prone to false detection of local gradients and noise still
remaining in the signal under examination.

Considering the accepted tolerances for the 5 markers as
identified in Table 2, the multi-component based CC
approach conformed to 4 of these (QRS onset marginally
higher – 6.6 ms vs 6.5 ms) with the P onset lying outside
of what was considered to be an acceptable range. Given
the historical difficulty of P wave detection and accurate
marker location reported by many studies [15], this is not
initially considered to be a drawback of the algorithm, but
more an indication of an area requiring further improve-
ment of the approach.

Overall the multi-component based CC approach outper-
formed the two benchmarking techniques in both accu-
racy of cardiac detection and marker insertions, however,
2 parameters within the algorithm were found to have a
significant influence on the algorithm's performance; cor-
relation interval and threshold parameter. Values for these
parameters can be established during a training period.

Correlation interval
Results following the testing process indicated that care
must be taken when selecting the appropriate correlation
interval for CC based approaches. If this value is too large,
interwave components of adjacent waves maybe consid-
ered during the correlation process. On the other hand, if
the interval is too small, the templates used during the
correlation process may not have the ability to
discriminate between different desired portions of the
underlying signal. Figure 5 shows the multi-component
based CC approach processing an excerpt from one record
with a correlation interval of 560 ms and 280 ms. The
markers indicated at the top of the trace are those auto-
matically inserted by the algorithm. The markers indi-
cated at the bottom of the trace are those which have been
inserted manually by clinical experts.

In the first instance detection rates are low as the interval
is too large, however, when the interval is reduced to 280
ms, the rate of detection of the markers for the algorithm
increases significantly. Given that under normal condi-
tions the duration of the QRS complex is in the region of
100 ms [16] and a second QRS complex cannot physio-
logically occur for a further 200 ms, this would suggest a
value of the correlation interval in the region of 300 ms as
a suitable choice.

Threshold parameter
The threshold parameter can be considered to be the min-
imum value for a correlation result to be considered as a
true wave detection. For example, P waves can be consid-
ered to have relatively low energy content. If the threshold
value is initially set at too large a value then it will not be
possible for the point at which the CC function returns the
point of maximum similarity to exceed this and subse-
quently indicate a waveform detection. Figure 6 shows the
multi-component based CC algorithm with threshold val-
ues of 85% and 60% of training waveform peak ampli-
tude averages. As can be seen it was found necessary that
the final thresholding check following the CC considered
a lower percentage of the average signal amplitude to
ensure successful detection of the wave.

The multi-component based CC approach is affected by
both the correlation interval and threshold parameters of
the algorithm, hence a training/tuning process is required.
Each of the other two algorithms suffer from similar
inherent algorithmic drawbacks and hence this is not con-
sidered to be a disadvantage of the approach provided it is
taken into consideration during application of the
algorithm.

Abnormal recordings
Although, as previously mentioned, the QT database has
a large variety of abnormal ECG recordings, two specific
Page 9 of 14
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examples are highlighted at this point to further compare
the performance of the multi-component based CC

approach and the non-syntactic based approach. In the
first instance a recording where an inverted T wave is

Insertion of beat markers with a correlation interval of (a) 560 ms (b) 280 msFigure 5
Insertion of beat markers with a correlation interval of (a) 560 ms (b) 280 ms. Markers included on the bottom of the trace are 
those indicated and inserted by clinical experts. The notation used is as follows: t] represents the position of the markers for 
the t wave amplitude and t wave offset respectively; [N] represents the position of the markers for the QRS onset, peak and 
offset respectively, where N is used to represent a QRS complex; u] represents the position of the markers for the u wave 
amplitude and u wave offset respectively. Markers included on the top of the trace are those indicated following automated 
processing. The notation used is as follows: [Q R S] represents the position of the markers for the QRS onset, QRS peak and 
QRS offset respectively; T T] represents the position of the markers for the T wave peak and T wave offset respectively. In 
instances where no markers have been indicated, the algorithm has failed to correctly detect the waveform boundaries and 
peaks.

 

 

(a)

(b)
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present is examined and in the second instance a record-
ing similar to conditions exhibited by First Degree Heart
Block is examined.

Figure 7(a) shows the correct insertion of the markers for
the multi-component based CC approach and Figure 7(b)

shows the insertion of the markers with the non-syntactic
based approach. As can be seen, comparing these two
techniques, both have the ability to correctly detect the
peak of the T wave, however, the multi-component based
CC approach has the ability to detect in all instances the
end of the T wave, which was not correctly detected in any

Insertion of beat markers for threshold values of (a) 85% (b) 60% of training averagesFigure 6
Insertion of beat markers for threshold values of (a) 85% (b) 60% of training averages. Markers included on the bottom of the 
trace are those indicated and inserted by clinical experts. The notation used is as follows: t] represents the position of the 
markers for the t wave amplitude and t wave offset respectively; [N] represents the position of the markers for the QRS onset, 
peak and offset respectively, where N is used to represent a QRS complex; [p] represents the position of the markers for the 
p wave onset, amplitude and p wave offset respectively. Markers included on the top of the trace are those indicated following 
automated processing. The notation used is as follows: [Q R S] represents the position of the markers for the QRS onset, QRS 
peak and QRS offset respectively; T T] represents the position of the markers for the T wave peak and T wave offset respec-
tively; [P P P] represents the position of the markers for the p wave onset, peak and offset respectively. In instances where no 
markers have been indicated, the algorithm has failed to correctly detect the waveform boundaries and peaks.
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of the cases analysed by the non-syntactic approach. The
ability to know the shape and form of each component of
the ECG waveform in advance has shown here the further
benefits of the multi-component based CC approach and
in addition showed its ability in instances of non-normal
ECG recordings to perform successfully.

Figure 8(a) and 8(b) show the results of the multi-compo-
nent based CC approach and the non-syntactic based
approach respectively given the instance of First Degree
Heart Block. As can be seen the multi-component based
CC approach outperforms the non-syntactic based

approach, with the ability to detect all elements of the
QRS complex. The non-syntactic based approach has only
the ability to detect the peak of the QRS complex. The
complexity associated with the abnormality has deemed
the algorithm unable to analyse any further interwave
components. The benefits of matching the waveform with
a template previously established for the person under
examination offers the ability to specifically tailor to the
recordings under investigation as opposed to generically
processing the signal as with the non-syntactic approach.

Application of the multi-component based CC approach (a) and the non-syntactic based approach (b) to abnormal ECG waveformsFigure 7
Application of the multi-component based CC approach (a) and the non-syntactic based approach (b) to abnormal ECG wave-
forms. In this case, an inverted T wave is present. Markers included on the bottom of the trace are those indicated and 
inserted by clinical experts. The notation used is as follows: t] represents the position of the markers for the t wave amplitude 
and t wave offset respectively; [N] represents the position of the markers for the QRS onset, peak and offset respectively, 
where N is used to represent a QRS complex; [p] represents the position of the markers for the p wave onset, amplitude and 
p wave offset respectively. Markers included on the top of the trace are those indicated following automated processing. The 
notation used is as follows: [Q R S] represents the position of the markers for the QRS onset, QRS peak and QRS offset 
respectively; T T] represents the position of the markers for the T wave peak and T wave offset respectively; [P P P] repre-
sents the position of the markers for the p wave onset, peak and offset respectively. In instances where no markers have been 
indicated, the algorithm has failed to correctly detect the waveform boundaries and peaks.
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Conclusions
The accurate detection of the interwave components of
the ECG can be considered to significantly effect the over-
all performance of the computerised classification proc-
ess. Three approaches to beat detection were developed
and extensively tested on 3000 cardiac cycles to assess
their performance. Non-syntactic beat detection and CC
algorithms were used as means of benchmarking

algorithms. A new approach of multi-component based
CC was proposed and results showed it to out perform the
two benchmarking techniques in both accuracy of cardiac
cycle detection and marker insertions. The multi-compo-
nent approach identified beat markers based on 3
individual CC processes addressing the QRS complex, the
P wave and the T wave individually. For each of these cor-
relation steps, once a correlation match had been

Application of the multi-component based CC approach (a) and the non-syntactic based approach (b) to abnormal ECG waveformFigure 8
Application of the multi-component based CC approach (a) and the non-syntactic based approach (b) to abnormal ECG wave-
form. In this case First Degree Heart Block is present in the recording. Markers included on the bottom of the trace are those 
indicated and inserted by clinical experts. The notation used is as follows: t] represents the position of the markers for the t 
wave amplitude and t wave offset respectively; [N] represents the position of the markers for the QRS onset, peak and offset 
respectively, where N is used to represent a QRS complex; [p] represents the position of the markers for the p wave onset, 
amplitude and p wave offset respectively. Markers included on the top of the trace are those indicated following automated 
processing. The notation used is as follows: [Q R S] represents the position of the markers for the QRS onset, QRS peak and 
QRS offset respectively; T T] represents the position of the markers for the T wave peak and T wave offset respectively; [P P 
P] represents the position of the markers for the p wave onset, peak and offset respectively. In instances where no markers 
have been indicated, the algorithm has failed to correctly detect the waveform boundaries and peaks.
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established, markers were inserted for onsets and offsets
based on predefined values. It is proposed that the
increase in performance of this approach in comparison
with the benchmarks can be attributed to the lack of heu-
ristic gradient searching required for marker insertion. In
addition, the ability to match a portion of the ECG signal,
namely the QRS, during CC as opposed to matching to
the entire PQRST reduces the complexity of the overall
process and subsequently enhances performance.

Overall, the results have shown the benefits of employing
a multi-component based CC approach. Further studies
are currently underway to investigate the performance of
the algorithms under instances of noise conditions and
further variants of non-normal ECG recordings and in
addition possible improvements to the stage of P wave
detection.
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