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Abstract

Background: The skin temperature distribution of a healthy human body exhibits a contralateral
symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an
alteration of the thermal distribution of the human body. Since the dissipation of heat through the
skin occurs for the most part in the form of infrared radiation, infrared thermography is the method
of choice to study the physiology of thermoregulation and the thermal dysfunction associated with
pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by
computerised techniques.

Methods: This paper presents techniques for automated computerised assessment of thermal
images of pain, in order to facilitate the physician's decision making. First, the thermal images are
pre-processed to reduce the noise introduced during the initial acquisition and to extract the
irrelevant background. Then, potential regions of interest are identified using fixed dermatomal
subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the
degree of asymmetry between contralateral regions of interest using statistical computations and
distance measures between comparable regions.

Results: The wavelet domain-based Poisson noise removal techniques compared favourably
against Wiener and other wavelet-based denoising methods, when qualitative criteria were used.
It was shown to improve slightly the subsequent analysis. The automated background removal
technique based on thresholding and morphological operations was successful for both noisy and
denoised images with a correct removal rate of 85% of the images in the database. The automation
of the regions of interest (ROIs) delimitation process was achieved successfully for images with a
good contralateral symmetry. Isothermal division complemented well the fixed ROls division based
on dermatomes, giving a more accurate map of potentially abnormal regions. The measure of
distance between histograms of comparable ROIs allowed us to increase the sensitivity and
specificity rate for the classification of 24 images of pain patients when compared to common
statistical comparisons.

Conclusions: We developed a complete set of automated techniques for the computerised
assessment of thermal images to assess pain-related thermal dysfunction.
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Background

The skin temperature distribution of a healthy human
body exhibits a contralateral symmetry [1]. Temperature
distribution that shows asymmetrical patterns is usually a
strong indicator of abnormality [2-4], but the converse is
not always true since some pathological conditions may
exhibit bilateral thermal dysfunction. In such cases other
signs of abnormalities in the temperature distribution
need to be found [5,6]. Some nociceptive and most neu-
ropathic pain pathologies are associated with an altera-
tion of the thermal distribution of the human body in the
form of hyperthermic or hypothermic regions [5]. Since
the dissipation of heat through the skin occurs for the
most part in the form of infrared radiation, infrared ther-
mography is the method of choice to study the physiology
of thermoregulation and the thermal dysfunction associ-
ated with pain. The early literature on medical thermogra-
phy focused on qualitative interpretation of
thermograms; this involved determining abnormal ther-
mal variations of the skin by means of a visual assessment
of pseudo coloured or grey-level thermograms with the
help of isothermal displays, visual localisation of hot or
cold spots, and visual detection of symmetry [7-12].

The task of decrypting thermograms and extracting useful
and reliable information was complex, even for highly
trained medical thermographers, since it relied upon the
subjectivity of the human visual ability to distinguish
between variations in intensity levels representing tem-
perature distribution in thermograms. In addition, the use
of pseudo-colours for mapping the temperatures of a ther-
mogram was also criticised for its subjectivity due to the
psychological effect of certain colours, which may skew
the observer's performance [13]. As a result, thermo-
graphic research examined general quantification tech-
niques for specific problems in order to reduce the
subjectivity of the assessment of thermograms [14]. Many
past and recent publications discuss thermal dysfunction
associated with pain, however, to our knowledge none so
far applied comprehensive computerised techniques to
the assessment of thermal images of persons experiencing
pain.

Methods

Objectives

The overall goal of this work was to automate as much as
possible a computerised assessment of thermal images of
pain in order to support clinicians' decision making. Our
approach consists of several steps. First, the thermal
images are pre-processed to reduce the noise introduced
during the initial acquisition of the images and to extract
irrelevant background. Then, potential regions of interest
are identified in a semi-automated manner, using fixed
dermatomal subdivisions of the body; they are also iden-
tified in an automated manner based on an isothermal
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analysis and segmentation techniques. Finally, we assess
the degree of asymmetry between contralateral regions of
interest using statistical computations and distance meas-
ures between comparable regions.

Data collection

Hundreds of thermal infrared images of pain patients
were digitally recorded on magnetic tapes by Monique
Frize and her team at the Pain Clinic of the Moncton Hos-
pital, Moncton, New Brunswick, Canada, between 1981
and 1984, using an AGA Thermovision 680 medical infra-
red camera system and an AGA OSCAR recording and
retrieval system. Each image had 128 x 128 pixels and 256
grey intensity levels. We randomly selected 43 patients
from this database, 25 females and 18 males. In June
2002, a second set of thermal images was taken of 15
healthy volunteers, following approval by the Research
Ethics Committee at Carleton University. The healthy sub-
jects consisted of 9 males and 6 females, who did not have
any known medical history of chronic pain or ongoing
acute pain. The same infrared camera system and image
format previously used in the 1980s were also used for
these new tests. This population served as our control
population. The images were transferred to a PC and
saved in a Tag-based Image File Format (TIFF) for easy
manipulation. The programming work was carried out
with MATLAB and the Image Processing toolbox. Exam-
ples of thermal images used in this study are provided in
Figures 1 to 2. Figure 1 shows original images while Figure
2 shows pseudo-colour isothermal images. Thermo-
graphic examination were carried out in a room without
windows, maintained at a uniform, constant temperature
of 23°C and relative humidity ranging from 50% to 70%.
Subjects were asked to follow the patient preparation
guidelines published by the American Academy of Ther-
mology [15] prior to the examination. Subjects were asked
to disrobe the body areas to be imaged and stand up for
15 minutes to allow equilibration with the ambient tem-
perature. Images were taken of the upper-back (primarily
thoracic region), lower-back (primarily lumbar region)
and upper- (thighs) and lower-legs (calves).

Methodology

Pre-processing of thermal images

The characteristics of the thermal imaging system used in
this study was assumed to be an almost ideal infrared sys-
tem, where most of the noise types inherent to the design
are lower than the photon noise generated by the back-
ground and signal itself. It is known that photon noise fol-
lows a Poisson distribution and is signal-dependent
[16][17]. Common noise removal techniques based on a
Gaussian approximation to Poisson noise do not work
well due to the signal-dependent, spatially variant nature
of photon noise. In order to remove the noise efficiently
while retaining the relevant information contained in
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(a) Abnormal upper-back (b) Normal upper-back
? l
(¢) Abnormal lower-back (d) Normal lower-back

(e) Abnormal upper-legs ) Normal lower-legs

(g) Upper-back (control population) (h) Upper-back (control population)

Figure |
Examples of thermograms considered in this study. Thermograms of the upper-back, lower-back, upper- and lower-
legs for pain patients and control subjects.
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(d) Normal lower-back
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(f) Normal lower-legs
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(g) Upper-back (control population) (h) Upper-back (control population)

Figure 2
Pseudo-colour isothermal display of thermograms. Pseudo-colour isothermal display of thermograms of the upper-
back, lower-back, upper- and lower-legs for pain patients and control subjects. The colorbar on the right gives the range of

temperature in °C.
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thermal images, we adapted a wavelet-based Poisson
noise removal technique that was suggested by Nowak
and Baraniuk [18]. They considered the successive images
with increasing intensity levels from the photon counting
process, until they obtain the final image at the end of the
observation period. The authors measured the error
between a wavelet-domain filtered version of each image
with the next image, until the final image. The sum of the
errors is called the PREdictive Sum of Squares (PRESS),
which is dependent on the filter (or threshold) used. Min-
imising the PRESS criterion yields the optimal filter (or
threshold). The authors also showed that the sub-images
are not required in order to compute the optimal thresh-
old, since the latter reduces to:

PRESS 0 - occ?
h(PRESS) _ e (1)

o~

where 0 refers to the wavelet transform of the image, o’

is the corresponding matrix of noise variance estimates, o
is a regularisation parameter (the threshold is optimal for
o = 1), and (.), sets to zero the negative thresholds.

The noise variance is estimated by projecting the image
onto the square of the wavelet and scaling functions,
yielding what the authors called a Discrete Wavelet
Squared Transform (DWST). The DWST may be imple-
mented efficiently using recursions similar to that of the
Fast Wavelet Transform. The choice of the wavelet bases is
important to preserve the original features of the thermal
images. In particular, they need to be well localised and
have a certain degree of smoothness. Possible candidates
among orthogonal wavelets are Daubechies wavelets and
Battle-Lemarié spline orthogonal wavelets. They have
been shown to provide acceptable results in medical
image processing.

The next step is to remove the background, which in this
work refers to parts of the thermal images unnecessary for
a correct assessment. Correct segmentation of images is
usually a difficult task when images represent complex
objects and scenes. However, thermal images of body
areas are usually simple enough that thresholding meth-
ods of segmentation perform satisfactorily, with addi-
tional image processing steps if necessary. As a result we
propose a background extraction method combining an
optimal thresholding method adapted from Tsai's work
[19] and additional morphological processing steps. The
algorithm is summarised as follows:

1. The histogram of the image is computed and smoothed
with a Gaussian function to obtain a desired number of
modes.
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2. The extreme values of the resulting function are then
computed as well as their corresponding grey-level.

3. A first threshold is set to the strongest minimum, that is
the last minimum remaining after successive smoothing.
A second threshold is selected to be the first stable mini-
mum after successive smoothing. The final threshold is
then given by a weighted sum of the two thresholds.

4. Isolated pixels wrongly labelled as background pixels
are corrected. The approximate boundaries of the image
are superposed to the thresholded images and any holes
created are filled.

5. The remaining regions of interest are then roughly seg-
mented and the smaller regions are discarded as they
likely correspond to background parts. The same proce-
dure is performed on the background regions.

6. Finally the remaining possible holes in the foreground
regions are filled based on the size and shape of the
regions.

Identification of region of interests (ROls)

In order to compare the results that were derived from our
population of normal patients with the values published
in the literature [3,4], we divided the body into multiple
squares or rectangles that other authors have used, for
example Goodman [3] or Uematsu [4].

The manual division by Uematsu followed the areas of the
skin called dermatomes that are innervated by the major
peripheral nerves. Being able to link the data from those
regions of interest with the corresponding nervous system
that feeds them is believed to be more meaningful for the
assessment of the thermograms. Goodman used a grid of
squares, for the back and front, and rectangles for the
arms, legs and extremities. The grid was adapted to the
bodily dimensions of each subject and could be moved
around to cover any desired areas. The statistics were
computed for various numbers of slices or frames of the
unit square or rectangle and results from the analysis com-
pared to that of Uematsu's. For comparison purpose, we
devised a hybrid of the two divisions for the back, chest
and legs, which consists in Uematsu's division with two
additional regions in the back.

Our algorithm first looks for some easily identifiable
landmarks, namely the shoulders and the hips for the
chest and back, the buttock cleft for the back, the area
around the knee for the legs. This is achieved through the
following steps:

1. The vertical symmetry line separating contralateral parts

of the body is first sought by detecting the edges and
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averaging the middle distance between the outer bounda-
ries of the body.

2. For the right and left sides of the body, we defined the
function corresponding to the distance between the outer
boundaries and the symmetry line, thus obtaining two
functions representing the left and right profiles of the
body.

3. The profile resulting from averaging both left and right
profiles is smoothed with a Gaussian function and we
look for extreme values of the resulting function.

4. The first significant maximum is found to be represent-
ative of the extremity of the shoulder and the level corre-
sponding to 80% of the maximum is used to find the
coordinate of the extreme point for choosing the ROIs.

5. The flank level is found through a similar method for
the upper back images but looking for the first significant
minimum of the pro-file function instead of the maxi-
mum. For the lower back images, a search for the mini-
mum distance between left and right side, above the
upper point of the buttock cleft, provides acceptable
results.

6. The buttock cleft is found through an analysis of the
horizontal profile lines across the lower part of the
images, when a middle edge line is present. The distance
between the lower point and higher points is computed
for each profile lines, yielding a function of this distance.
The first minimum of this function is chosen to be
approximately the upper extremity of the buttock cleft.

7. Finally, the knee is easily detected by looking at the
minimal distance between each edge lines for both legs.

Based on the previous landmarks, the positioning of the
various boxes delimiting the ROIs defined by both
Uematsu and Goodman was determined in a straightfor-
ward manner. A second method was implemented to
determine more specific regions of interest than der-
matomes. It is based on an isothermal analysis of the
entire pre-processed image, to determine hotter and
colder regions. The step for the computation of each iso-
therm is chosen according to the range of intensity values
covered in the image to provide some adaptivity to the
generation of isotherms. In practice, the step is set to one
tenth of the total range of intensity values.

Also, whenever the sensitivity setting is available, we
looked for isothermal regions at regular intervals of
0.5°C, for comparison with common isothermal analysis
found in the literature. The same rule is applied for the
hotter regions, starting from the maximum and subtract-
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ing successive increments of the step. Typically, only the
first two to three steps are necessary to yield significant
regions. In addition, smaller regions of less than 10 pixels
were discarded by thresholding the areas of the regions
returned by the previous isothermal computation. Statis-
tical comparisons with regions smaller than the threshold
area would have limited significance in most cases.

Moreover, whenever two regions of very different sizes
(one large and one small) are found to be too close to
each other, they are merged into one larger region. The
positions and pixels in the remaining regions are kept for
the statistical analysis.

Finally, in order to avoid artifact regions located around
the contour of the body area of interest, the image is
eroded along the boundaries using a morphological erod-
ing operator. For all methods, a simple algorithm is used
to compute the reflection of the regions of interest with
respect to the vertical line of symmetry, allowing us to
assess the asymmetry of the resulting intensity/tempera-
ture distribution.

Asymmetry analysis

We considered a comprehensive set of statistical features
that may be able to capture more completely the nature of
the distributions in the regions of interest. Those features
include the classical moments (mean, variance, skewness
and kurtosis), the extreme values, the area, the heat con-
tent defined by Montoro and Anbar as the area times the
mean temperature [20] and finally the entropy of the
region, which may be approximated as:

E:—gpklogm) (2)

where p, is the number of pixels in each grey-level k € [1,
L], where L is the number of grey levels, which we chose
to be 256.

The outcome for a particular region of interest usually
relies on the computation of the difference of statistics
between this region and its contralateral counterpart.
Some authors also considered the statistics of the pixel-by-
pixel difference between two comparable regions [21].
However, we felt that both these approaches were omit-
ting important parameters of the temperature distribution
of ROIs, since they looked at a few statistical features
derived from assumptions on the nature of this distribu-
tion. As a result, we proposed a new statistical approach
using distances between histograms of comparable ROIs
in order to assess their degree of similitude as it is exten-
sively used in image registration and pattern recognition.
The following distance measures were considered: Man-
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hattan or absolute distance, Euclidian distance, maximum
distance, chi-squared distance, Jeffrey-divergence distance
and Mallows distance [22,23]. The first three distances are
simply the first three moments of the classical Minkowski
distance based on the metric of the same name. The gen-
eral formula for the Minkowski distance is:

L 1/p
D(H,G)= §|H<i>—c<i>|”) (3)

where H and G denote the histograms and p = 1 for the
Manhattan distance, p = 2 for the Euclidian distance and p
= oo for the maximum distance. The chi-square distance is
given by:

L
Dchisquare (H,G) = 2
i=1

The Jeffrey divergence is defined by:

D,D(H,G)ziH(i)logHH¢,Jr

p2 (+G(i)
+c(i)1ogm (5)

The Mallows distance is:

1
p/p

(6)

1 L
Diations (H,G) = IE‘HU)_G“)

where H(;) and G; are the sorted histogram values and p
was chosen to be 2.

In addition, we also calculated the Kolmogorov-Smirnov
statisticc, which is defined as the maximal distance
between two cumulative distributions:

DKS(H'G):miaX|chm(i)_chm(i)| (7)

where H,,,, and G, are the cumulative histograms corre-
sponding to H and G respectively. The Kolmogorov-Smir-
nov test derived from this statistic was performed for each
pair of symmetric regions of interest, since it showed
encouraging results in Vavilov et al.'s paper [24]. This test
has the advantage of being non-parametric, that is, it does
not assume that the population of pixels within each

region follows a specific distribution.
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Results and discussion

Performance of the denoising method

The Discrete Wavelet Squared Transform (DWST) was
implemented in a relatively straightforward manner using
the one-dimensional and two-dimensional wavelet trans-
forms available in the Wavelab library from the depart-
ment of Statistics of Stanford University [25]. In order to
reduce the memory requirements of the direct algorithm,
we chose to decompose each 128 x 128 thermal image
into four 64 x 64 sub-images and remove the noise from
each of these sub-images. In practice, it was found that
artifacts affect the quality of the resulting image at the bor-
der of each sub-image.

In order to reduce these artifacts, we increased the number
of sub-images to nine partially overlapping 64 x 64
images and we kept the areas away from the interior bor-
ders for each sub-image (see Figure 3). This division into
sub-images does not completely eliminate the border
effect but reduces it to an acceptable level that does not
affect the subsequent analysis. Note that a DWST applied
to the whole image would remove these border artifacts.
A translation invariant DWST may provide a good alterna-
tive, although it would increase the computational com-
plexity. In addition, we assumed that our subdivision kept
the signal-dependence and Poisson nature of the noise.

A few orthogonal wavelet bases were investigated on ther-
mal images from our database with various noise levels.
Nowak and Baraniuk [18] suggested using a simple Haar
basis or a Daubechies wavelet basis for nuclear medicine
images. Our tests on thermal images showed that the best
results quantitatively (based on the reduction in noise var-
iance) and visually (presence of artifacts and ringing effect
for instance) were achieved with a Battle-Lemarié spline
wavelet basis of the 3rd order.

Furthermore, we varied the parameter a in equation 1 and
found that o > 1 yielded better denoising results. In par-
ticular, 4.5 < a < 7.5 consistently produced the best trade
off between reduction of noise and conservation of the
image structure.

Since the computation of mean square errors between
original images and denoised images was not readily
available, the performance of the denoising was assessed
in terms of percentage of edges and contours remaining
after denoising, for a comparable noise level. We found
that the resulting images from the Press-optimal wavelet-
domain filter retained the contours and edges of the ther-
mal images better than when a Fourier domain Wiener fil-
ter or a wavelet-domain filter (applied to the square root
of the image) was used.
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1 2 5
3 4 6
1 5 2
Sub-images 1 to 4 Sub-images 5 and 6 7 S 8
3 6 4
7 3 9 Final. portions of the sub-
images retained
Sub-images 7 and 8 Sub-image 9

Figure 3

Subdivision of images for the DWST. Division of the original image into 9 sub-images. The numbers indicate the sub-
images. The final square on the right shows the final portion of each sub-image that is retained to compute the final, resulting

image.

In order to determine the percentage of edges remaining
after denoising we summed the total number of pixels
returned by a Canny edge detector for increasing thresh-
old level, up to a level where no edge can be detected. We
assumed that the Canny edge detector was not affected
significantly by the noise and therefore we normalised the
number of pixels to that of the noisy image.

Background extraction efficiency

The ratio of the number of images whose background was
properly extracted, to the total number of images was
slightly higher for the denoised images, as shown in table
1. A correct background extraction, according to our crite-
ria, implies that only the region targeted when the image
was taken is present. In our study, for instance, the upper-

back, the lower back or the legs are the targeted regions.
The quality of the background extraction was assessed vis-
ually and poorly segmented thermal images were dis-
carded manually. The results from table 1 confirm our
initial assumption that an efficient denoising could
improve the subsequent processing of thermal images.
The overall percentage of images whose background was
correctly extracted is 88% for the denoised images and
81% for the noisy images. However, it appears that the
thresholding part of our background extraction is less
affected by the noise than the corrective morphological
processing. Therefore, a more complex thresholding strat-
egy may yield similar results for noisy and denoised ther-
mal images.
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Table I: Rate of incorrect background extraction. Rate of incorrect background extraction for images of the lower back, upper-back
and legs. The first figure indicates the number of images whose background was incorrectly extracted. The second figure is the total

number of images.

With Denoising

Without Denoising

Lower Back images 22/72
Upper Back images 12/85 15/85
Legs 22/205 30/205

Automated selection of ROls

The automated selection of ROIs using a compromise
between Uematsu's technique and the more complete
technique by Goodman was fairly successful. The determi-
nation of the limits for the ROIs based on the shape of the
body and on its intensity distribution enabled us to
approximately place the boxes corresponding to each
ROLI. A simple iterative procedure was performed on the
boxes to make sure they do not contain any background.
However, the difference in body shapes and the lack of
symmetry of body areas in some thermal images made it
difficult to adapt the ROIs to cover the best area.

Furthermore, we assumed that thermal images would be
symmetrical with respect to a vertical line of symmetry;
this was verified in most thermal images. However, other
thermal images showed areas of the body bent toward one
side of the border of the image, or rotated. As a result, even
if the limits for the ROIs were correctly identified, the final
ROIs did not cover the wanted areas. It may therefore be
necessary to consider alternative symmetry curves and
define a proper reflection method to get corresponding
pixels from contralateral regions.

In addition, we found that division into rectangular boxes
based on the dimension of the body may fail to include an
abnormality if the latter happens to be in the middle of
two boxes. This outlines the necessity for a complemen-
tary ROI delimitation method such as the isothermal
analysis that works well for asymmetric images and targets
potential abnormalities. It produced similar results in
most cases: targeted ROIs over possible abnormalities in
the thermal pattern distribution in the form of hot or cold
spots.

ROIs covering both contralateral parts of the body and
ROIs along the line of symmetry were flagged for later
analysis, ensuring that the assessment does not fail to
detect bilateral abnormalities. A strong gradient of tem-
perature between a flagged region and its surrounding
area indicates an abnormality according to our procedure.

We also compared the ROIs produced by the isothermal
analysis of fully pre-processed images and of the noisy
images with the extracted background. We found that
noisy images tend to return a greater number of smaller
ROIs that would otherwise be merged into larger ROIs in
the case of denoised images. However, smaller regions
may not necessarily reflect a true elevation or decrease of
temperature but instead indicate spurious, noisy pixels.
This justifies discarding regions smaller than a threshold,
which was chosen to be 20 pixels for our study. In addi-
tion, statistical comparisons of very small samples may
not be significant, which further justifies our decision.

Some performance aspects of thermographic analysis
The performance of our quantitative analysis of thermal
images in terms of complexity and CPU time was greatly
affected by the denoising stage and by our choice of the
PRESS-Optimal filter. For instance, the DWST theoreti-
cally required O(213 x 1282) computations per resolution
level, but our implementation using smaller sub-images
increased the complexity. The average CPU time to proc-
ess a single image was about 4 minutes, using a Pentium
I at 1.2 GHz with 512 MB of memory, MATLAB release
12.1 and Wavelab 802 [25]. In comparison, the rest of the
analysis (background extraction, identification of ROIs,
asymmetry analysis) required typically less than 3 sec-
onds. Although it is difficult to assess the overall complex-
ity of the thermographic analysis, it is certainly heavily
weighted by the denoising step. The other denoising tech-
niques considered require less CPU time than the PRESS-
Optimal method, but do not perform as well. If we
assume that the CPU time is a decisive factor in the anal-
ysis of large databases of thermal images, it would be
desirable to improve our implementation of the PRESS-
Optimal method or investigate other denoising methods
that perform equally well.

Thermal asymmetry of the control population

From our control population of normal healthy subjects,
we selected images of the back and legs and performed the
pre-processing steps and the selection of regions of inter-
est. In order to validate the normality of the population as
far as pain is concerned, we first divided each image using
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Table 2: Normal Values for the back. Mean Temperature Difference plus or minus standard deviation for our control population of

healthy volunteers.

ROIs Number of Cases Mean Temperature Difference + Standard
Deviation
Thoracic (medial) 12 0.09 + 0.09
Shoulder (posterior) 12 0.12£0.10
Thoracic (lateral) 12 0.09 £ 0.09
Thigh (anterior) 13 0.15+0.11
Thigh (posterior) 14 0.11 £0.09
Knee (anterior) 13 0.12£0.13
Knee (posterior) 14 0.15+0.12
Leg (anterior) 13 0.15+0.12
Leg (posterior) 14 0.10 £ 0.06

the predetermined grid from Uematsu et al.'s and Good-
man et al.'s paper and compared the statistics derived
from these ROIs with the published normal values of ther-
mal asymmetry. Our results are presented in table 2.

All the mean temperature difference values are well within
the limits for normal value specified by Ue-matsu and
Goodman. Our values are in fact sig-nificantly lower, by
the order of 0.1°C, which may partly be explained by the
relatively small number of cases in our control
population. This certainly had an effect on the standard
deviation of the mean temperature differences. Another
reason for these low values may be the size of the regions
of interest, which for practical reasons was smaller than
that of the previous authors.

We pursued our assessment by computing the various dis-
tances mentioned previously on all our ROIs and for
noisy images and denoised images (without background).
Table 3 and 4 summarise the results and give the mean,
standard deviation, and upper 99% confidence interval of
the mean for the distances between the temperature distri-
bution of ROIs of the back and legs. We did not differen-
tiate between specific regions of the back or legs since we
were interested in deriving one threshold for all regions.
The threshold would thus be applicable to the ROIs
selected by the isothermal analysis, although the
approach consisting of defining a threshold for each
region is also valid. For each distance, we chose the upper
99% confidence interval as the threshold for determining
whether or not a region is abnormal.

Results from noisy and denoised images did not differ sig-
nificantly and confidence intervals were overlapping. This
also confirms that the denoising does not affect the statis-
tical properties of thermal images and thus does not
induce a loss of critical information, while we showed that
it facilitated the previous analysis.

Using the threshold values from table 3 we assessed the
efficiency of each distance measure to discriminate
between normal and abnormal regions of interest. For our
normal population, this was accomplished by looking at
the distances generated from a complete isothermal anal-
ysis of thermal images of the back and legs. The distance
with the least number of misclassifications may be seen as
the more discriminative with respect to normal regions,
that is the distance with the best specificity (Number of
true negatives with respect to the number of false posi-
tives) or the least number of regions identified as positive
or abnormal.

Table 5 shows the specificity values for each distance
measure. As expected, the specificity values are quite high,
since thresholds were applied to the same population
from which they were extracted, although on different
regions of interests. Table 4 may be viewed as validation
results for the thresholds selected, showing their efficiency
at identifying normal ROIs.

Finally, we noted that contrary to Vavilov et al. who found
that the Kolmogorov-Smirnov statistics allowed the accu-
rate classification of normal regions from abnormal and
potentially pathological regions, our experiment
suggested that other distance measures might be more
suitable to this task. All the other distance measures have
similar specificity values. In order to validate our
approach and draw some conclusions on the performance
of our novel statistical tool for the assessment of pain in
thermal images, we first analysed a set of 72 thermal
images of the upper back with the fixed division into rec-
tangular ROIs. Then the usual statistics were computed as
well as distance between distributions of comparable
ROIs.

Out of 222 identified regions of interest (and their sym-

metric parts when available), 33 regions were classified as
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Table 3: Distance results for the back. Mean, standard deviation and threshold of distance measures for the back, for our control
population. Mah., Eucl., Max., Chi, JD, Mal, KS stand for: Mahalanobis, Euclidian, Maximum, Chi-square, Jeffrey-Divergence, Mallows,
Kolmogorov-Smirnov distances respectively. Cl stands for confidence interval.

Distance results: noisy image

Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Mean 0.492 0.083 0.032 0.110 0.084 1.092 0.171
Std. dev. 0.152 0.025 0.013 0.057 0.048 0.571 0.103
Threshold 0.796 0.133 0.057 0.223 0.180 2.235 0.377
(99%Cl)
Distance results: denoised image
Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Mean 0.565 0.105 0.042 0.142 0.108 1.427 0.205
Std. dev. 0.180 0.039 0.020 0.070 0.060 0.798 0.111
Threshold 0.924 0.184 0.082 0.282 0.229 3.022 0.427
(99%Cl)

Table 4: Distance results for the legs. Mean, standard deviation and threshold of distance measures for the legs, for our control
population. Mah., Eucl., Max., Chi, JD, Mal, KS stand for: Mahalanobis, Euclidian, Maximum, Chi-square, Jeffrey-Divergence, Mallows,
Kolmogorov-Smirnov distances respectively. Cl stands for confidence interval.

Distance results: noisy image

Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Mean 0.663 0.099 0.037 0.195 0.101 0.509 0.181
Std. dev. 0.150 0.022 0.013 0.075 0.030 0.247 0.091
Threshold 0.964 0.142 0.063 0.345 0.160 1.004 0.364
(99%Cl)
Distance results: denoised image
Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Mean 0.694 0.106 0.038 0.206 0.109 0.528 0.192
Std. dev. 0.166 0.025 0.014 0.083 0.035 0.279 0.100
Threshold 1.027 0.155 0.066 0.373 0.178 1.086 0.392
(99%Cl)

abnormal using the Manhattan distance, 38 for the Euc-
lidian distance, 27 for the Maximum distance, 36 for the
Chi-square distance, 30 for the Jeffrey-Divergence dis-
tance, 39 for the Mallows distance and 37 for the Kol-
mogorov-Smirnov distance. The number of abnormal
regions produced by the comparison of mean, variance,
skewness, kurtosis, maximum and minimum was only 6.
The abnormal regions were not necessarily consistent
across the distance measures. The abnormal regions pro-
duced by the Euclidian distance, the Chi-squared distance,
the Kolmogorov-Smirnov distance and to a lesser extent

those produced by the Manhattan and Jeffrey-divergence
distances were generally equivalent. The abnormal
regions produced by the three other methods were rela-
tively different. It is interesting to note that the compari-
son of the mean, variance, skewness, kurtosis, maximum
and minimum returned a very low number of abnormal
regions as opposed to the distance measures. The thresh-
old for the mean was based on the values of table 2. The
other parameters were used to determine whether or not
the comparison of the mean was meaningful.
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Table 5: Specificity values for the control population. Specificity values of statistical distance measures considered, from a complete
isothermal analysis of thermograms of the back and legs for our control population.

Specificity for thermograms of the back

Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Specificity 0.95 0.95 0.93 0.95 0.94 0.95 0.86
Specificity for thermograms of the legs
Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist.
Specificity 0.97 0.99 0.98 0.97 0.98 0.98 0.95

Table 6: Sensitivity and specificity values for actual pain patients. Sensitivity and specificity values for thermograms of actual pain
patients. Mean AT refers to the comparison based on the mean, variance, skewness, kurtosis, maximum and minimum.

Mahn. dist. Eucl. dist. Max. dist. Chi sq. dist. D dist. Mallows dist. KS dist. Mean Temp.
diff.
Sensitivity 0.67 0.78 0.33 0.72 0.67 0.55 0.71 0.5
Specificity 0.67 0.83 0.83 0.67 0.67 0.5 0.43 0.67

Furthermore, we noted that the performance of the Mal-
lows distance seemed to be dependent on the size of the
sample, where the sample was less than a hundred pixels
typically. This is especially problematic when used in con-
junction with the isothermal analysis, which may return
several small regions. The Jeffrey-Divergence suffered
from a similar drawback and as a result we need to con-
sider one of the other distances for very small samples.
The Minkowski distances, the chi-square distance and the
Kolmogorov-Smirnov distance performed equally well
when tested on small samples provided by the isothermal
analysis. The five distances correctly identified small
abnormal regions for a series of 5 images with apparent
abnormalities, while the Jeffrey-Divergence and Mallows
distances missed 4 out of 5.

In addition, we compared the outcome from our analysis
with the outcome of an assessment by a neurosurgeon at
the Moncton Hospital and experienced thermographer, of
24 thermal images of the back and legs. The images were
visually assessed by the thermographer since no records or
patient history was available for these data. Figure 2 shows
an isothermal display at 0.5°C intervals for some of the
images submitted to the thermographer. The sensitivity
values (Number of true positives with respect to the
number of false negatives) and the specificity values
(Number of true negatives with respect to the number of

false positives) for the 24 images are summarised in table
6.

These results confirm that the sensitivity of the Euclidian,
Chi-square and Kolmogorov-Smirnov distance seem to be
significantly higher than that of other distances. Also, the
specificity of the Kolmogorov-Smirnov distance is lowest,
again confirming the results from the analysis of the con-
trol population. Based on the assessment of these 24
images, the best distance appeared to be the Euclidian dis-
tance with a fairly high sensitivity and specificity. The
Manhattan distance, the Mallows distance and the basic
statistics method had relatively low sensitivity. This sug-
gests these methods would dismiss as normal a number of
patients with abnormal patterns. Both Manhattan dis-
tance and Mallows distance did not perform as well as the
results of table 5 suggests.

Conclusions

This paper investigated the computerised assessment of
pain through digital infrared thermal imaging. In
particular, we looked at the overall digital processing of
medical thermograms, from the preprocessing require-
ments to the decision-support system inputs. In an
attempt to increase the objectivity and to facilitate the
assessment of pain by medical specialists, we automated
as much as possible the assessment of thermal images.
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The automation process included the pre-processing and
identification of the regions of interest, a statistical analy-
sis and a set of features that can be used by a physician to
make a diagnosis.

The pre-processing of thermal images had been over-
looked in the medical thermography literature, which
focused on the statistical and asymmetry analysis. In order
to facilitate the identification of the regions of interest, we
proposed applying denois-ing techniques to thermal
images. We modelled the noise by a Poisson distribution
with an additive Gaussian white noise component easily
removed by classical denoising techniques. Then, we
identi-fied the need for a noise removal method that takes
the Poisson nature of the noise (and of the signal) into
account. This was achieved through a Poisson noise
removal technique in the Wavelet domain called PRESS-
optimal that was available and used for nuclear medicine
images [18]. We showed that the resulting denoised image
was more easily processed in the subsequent analysis,
without any sig-nificant loss of statistical information.

The next problem was to remove the background in order
to focus on the areas of interest, again facilitating the fol-
lowing identification of the regions of interest for the sta-
tistical comparison. We proposed a simple yet efficient
histogram thresholding technique with additional mor-
phological and logical steps, which performed well on
both our databases of thermal images.

The identification of the regions of interest consisted of an
automated division into a rectangular grid following
Uematsu et al. and Goodman et al.'s papers |3,4] for com-
parison with our control population of normal healthy
subjects. This was done by identifying specific reference
points on the body, through an analysis of contours and
profiles across the image. In addition, an isothermal anal-
ysis was performed to determine specific and localised
regions, especially the hotter and colder ones that may be
indicative of abnormalities.

Finally, we proposed a new statistical tool for the classifi-
cation of regions of interest as normal or abnormal, based
on the computation of several distances between histo-
grams of the ROIs. The results of the quantitative assess-
ment of thermal images from our control population and
from pain patients showed that the method based on the
Euclidian distance seemed to outperform the other statis-
tical methods considered. Overall, we covered many of
the most important steps in the computerised assessment
of thermal images and removed the user input, thus pro-
viding a highly automated assessment of pain in thermal
images.

http://www.biomedical-engineering-online.com/content/3/1/19
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