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Abstract

Background: When a drug is applied on the skin surface, the concentration of the drug
accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the
value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-
capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-
capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies
the effect of the parameter values, when the region of contact of the skin with the drug, is a line
segment on the skin surface.

Methods: Though a simple one-dimensional model is often useful to describe percutaneous drug
absorption, it may be better represented by multi-dimensional models. A two-dimensional
mathematical model is developed for percutaneous absorption of a drug, which may be used when
the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as
in the direction into the skin, examined in one-dimensional models. This model consists of a linear
second-order parabolic equation with appropriate initial conditions and boundary conditions.
These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference
method which maintains second-order accuracy in space along the boundary, is developed to solve
the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution
of the parabolic equation gives the concentration of the drug in the skin at a given time.

Results: Simulation of the numerical methods described is carried out with various values of the
parameter r. The illustrations are given in the form of figures.

Conclusion: Based on the values of r, conclusions are drawn about (1) the flow rate of the drug,
(2) the flux and the cumulative amount of drug eliminated into the receptor cell, (3) the steady-
state value of the flux, (4) the time to reach the steady-state value of the flux and (5) the optimal
value of r, which gives the maximum absorption of the drug. The paper gives valuable information
which can be obtained by this two-dimensional model, that cannot be obtained with one-
dimensional models. Thus this model improves upon the much simpler one-dimensional models.
Some future directions of the work based on this model and the one-dimensional non-linear
models that exist in the literature, are also discussed.
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Background

A non-linear dual-sorption model of percutaneous drug
absorption is described in [2]. Another mathematical
model of percutaneous drug absorption and its exact solu-
tion is described in [3]. In [4], the non-linear percutane-
ous permeation kinetics of timolol is studied in vitro with
human cadaver skin. A model for a suspension with a
finite dissolution rate is solved numerically in [5]. In [6],
a mathematical model is developed for percutaneous drug
absorption with regular applications of the drug. All these
models are one-dimensional and the region of contact of
the skin with the drug, is a single point, say x = 0, where x
measures the distance into the skin.

To the authors' knowledge, no two-dimensional mathe-
matical model of percutaneous drug absorption exists in
the literature, where the region of contact is a line seg-
ment, say x = 0, 0 <y < L. The purpose of this paper is to
model the above situation mathematically and to obtain
an efficient finite-difference method to solve it numeri-
cally. The usual loss of accuracy along the boundary,
where the boundary conditions are of mixed type, is dealt
with in a novel approach.

Methods

Model equations

It is an established fact that the stratum corneum, viable epi-
dermis and upper dermis have distinctly different transport
and partitioning characteristics, and diffusion through the
dermis could be a critical determinant of the percutaneous
absorption profiles at least for some kinds of drugs. The
model is developed based on the classical view that a drug
molecule is rapidly removed by the capillary once it is par-
titioned into the dermis. Therefore, the skin-capillary
boundary may be, anatomically, interpreted as the stratum
corneum-dermis boundary.

Let the drug be applied as an ointment on the skin-sur-
face, say, {(0,y):0<y<L_}, attimet = 0. Let the thickness
(distance between the skin-surface and skin-capillary
boundary) of the skin be unity. Assuming that skin is an
isotropic medium, that is, the diffusivity is the same in the
x and y directions, the concentration c(x, y, t) of the drug
is given by Fick's Second Law of Diffusion, namely

a % 32

, O<x<l1,-L;<y<L, L, >L.,t>0, 1
at ax a}/ a <V ur by c ()

where L; L, and L, are positive real numbers. Assuming
that the concentration at the uppermost epidermis {(0, y,
t) : 0 <y <L} is maintained at unity, the boundary condi-
tions for the model are given by
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Jac

a—(O,y,t)zO,—Ld <y<0,t>0, (2)
X
c(0,y,6)=1,0<y<L,t>0, (3)
%(O,yt)zo,LC<ySLwt>0, (4)
ac
ay(x,—Ld, )=0,0<x<1t>0, (5)
ac
a—y(x,Lu,t)=0,0SxS1,t>O, (6)
%(l,y,t)+wc(1,y,t) 2 0,-Ly Sy <Lyt >0, (7)
X
where w:k—czl_—r.
kd r

In the above notation, k,is the normalized skin-capillary
clearence, k, is the diffusion parameter and r is the concen-
tration at the skin-capillary boundary when the concentra-
tion at the uppermost epidermis is regarded as unity (see
[3]). Assuming that there is no drug in the skin before the
application, the initial distribution associated with the
PDE is

c(x,y,0)=0,0<x<1,-L;<y<L, (8)

The flux J = J(t), through the skin to the receptor site, per
unit area, is given by

L, oc

(1) = '[Lda

(Fick's First Law of Diffusion), so that, from (7),

- uf’? (i)

The cumulative amount of drug eliminated into the recep-
tor cell per unit area at time t (see [2]) is

_[]x— dt wIJ. 1y,

Numerical methods

The approach to be adopted in obtaining a numerical
solution, is the method of lines in which the initial/
boundary-value problem to be solved is transformed into
a first-order initial-value problem. The region associated
with the skin is given by R;= {(x, y,t) 0<x<1,-L;,<y<L,
t>0}. Let N be a positive integer, and H = 1/(N + 1). Also
itis assumed that L.= Q:H, L, = Q,H, L;= Q;H, where Q,,
Q, and Q, are positive integers. Superimpose on R; a
square grid with mesh length H > 0 and let k > 0 be a con-
stant time step. The grid points are given by (x;, y,, {;); x;=
IH, 1=0(1)(N + 1), y,, = mH, m = -Q,(1)Q, and ¢; = jk, j =
0,1,2,.... The finite-difference solution which approxi-

(Lyt)dy (9)

(10)

Ae=Ae(1 )dydt

(11)
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mates the solution c¢(x, y, t) of the two-dimensional para-
bolic equation (1), is sought at each mesh point (x;, y,,, t;)
in the region [R-{0, y), 0 <y <L_.}] x t > 0. For notational
simplicity, denote

el = (50wt ) L = o (31T ) zg;(xl,ym,tj ).etc,

At any time-level t = tj,clj’m or qu,m’ the {(Q + Q,+ 1)(N
+2) - (Q.+ 1)} elements will be ordered in rows parallel
to the x-axis and in vector form, and will be denoted by

C(t) and Q, where Q is due to the boundary conditions
and is independent of time. For W = C and Q, and

joo_ j
Wy =€y OF 4 denote

—| j Il i Jo) j j
W(t)_I:wad’w*Qd‘f'l"“’w’l'wO’wl’m’ch’ch‘*'l’ch‘*Z’m’wQu] ,
. i _ j j j —
withwp, —[wr]z,mrwnﬂ,m"-"wz\lﬂ,m]' m=-Qq(1)Q -

In the above notation n takes the value 0 if m = 0(1)Q,and

takes the value 1 otherwise. The vector C(t) is a vector of
unknowns and Q is given by by

Cl(]),_l = qé,Qc = fﬁ,m = F form =0(1)Q,. All other qim
are zero. In the following discretizations, (x, y,,) and ¢;

respectively, denote (x,y,,;) and cl] - Atany time-level ¢

= (;, the differential equation (1) can be discretized as

d

E(Cl,m ) =Cxxlm T Cyyil,m-

1 1 . .
If _25§Cl,m and —281;‘61,,” are respectively, suitable
H H
approximations to ¢, and c,,; ,, the above discretiza-

tion can be written as

d 1
_(Cl,m ) = F{Sazccl,m + 8}2/Cl,m}'

" (12)

Discretization at (x,, y,,), m = -Qg:-

d

1
E(Co,m )= ?{(C—m =260,1n +€1,m) + (Co,m-1 = 2C0,m + Com+1) } (13)

The boundary condition (5) gives cg ,,..; = €o ..1- Discretiz-
ing the boundary condition (2) gives ¢ ,,, = ¢, ,, Substitut-
ing these values of ¢, ; and c; , in (13) gives

d

1
a( Com ) = F{(—zco,m +201,) + (=260, + 2€0,m11) }

The above equation can be written in the form

(14)
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d
dt

(15)

1 o2 2
(CO,m ) =T {SxCO,m + SyCO,m}'
H
where

2 _ 2 _
dxCo,m = —2Com +2¢ , and 5yco,m ==2C0m +2C0,m+1-

Discretization at (x,, ¥,,), I = 1(1) N, m = -Q:- Using the
boundary condition (5), the required discretization is

d
dt

(16)

1 (o2 2
(Cl,m ) =75 {chl,m + 8yCl,m}'
H
where

2 2
5xcl,m = C-1,m — 2C,m * Cla1,m and 5yCl,m = =201 + 20, m41-

Discretization at (x,, ¥,,,), m =-Q;+ 1, -Q; + 2,...., -2, Q,
+2, Q.+ 3,.., Q, -1:- Using the the boundary conditions
(2) and (4), the required discretization is

d
d

(17)

1 <2 2
(CO,m ) =5 {SxCO,m + SyCO,m}'
H
where

2 2
8Com = —2Com +201, and SyCO,m =Com—1—2C0,m + Com+1-

Discretization at (x,, y,,), m = -1:- Using the boundary
conditions (2) and (3), the required discretization is

d
dt

(18)

1 .o 2 1
(CO,m ) = F{cho,m + 6yCO,m} + F!
where

2 _ 2 —
d%Com =—2¢0,m + 261, and 8¢, = Co,m-1 — 2€0,m-

Discretization at (x;, y,,), m = 0,1,....,Q_:- Using the
boundary condition (3), the required discretization is

d
dt

(19)

1 2 2 1
(Cl,m ) = F{chl,m + 8yCl,m} + F'
where

2 _ 2 _
&%Cim = =20 + o and 8,Cy = Cp oy — 201, + C1 et

Discretization at (x,, y,,), m = Q, + 1:- Using the bound-
ary conditions (3) and (4), the required discretization is

_(CO,m ) :F{cho,m +6y60,m}+F' (20)

dt
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where

2 _ 2 —
8%Co,m = —2C0,m + 201, and 8)com =—2C0,m + Comi1-

Discretization at (x;, y,,), m = Q,:- Using the boundary
conditions (2) and (6), the required discretization is

d
dt

(21)

1 o2 2
(CO,m ) =3 {8xcom + SyCO,m}r
H
where

2 2
dxCo,m = —2Com +2¢,,, and 5y50,m = 2¢0,m-1 — 2C0,m-

Discretization at (x;, y,,), I = 1(1)N, m = Q,;:- Using the
boundary condition (6), the required discretization is

d

1
_(Cl,m ) = F{Sazccl,m + 8}Z/Cl,m}' ( 22)

dt

where

2 2
6xcl,m =C-,m — 20,m * C141,m and 6ycl,m =201 -1 = 201y

Discretization along the boundary x = 1, -L;<=y <= L,.

At the grid point (xy,;, 7,,) the differential equation (1)
can be written as

d

i (23)

(CN+1,m ) = Cxx;N+1,m + Cyy;N+1,m-
Let

Cax;N+1,m = OCN,m + BCN+1,m + YCuxx;N+1,m (24)

Using the Taylor-series expansion for Cy, ,, about the point
(XN+1s V) I (24), and then equating the constant terms,
and the coefficients of ¢, 1, and ¢y n 1 e giVES
o=2/H? B=-2(1+Hw)/H? y=H/3. (25)
Differentiating (1) with respect to x and (7) with respect
to y and t, respectively, and then using the assumptions

ij/y;N+1,m = nyx;N+1,m and Cxl;N+1,m = Clx;N+1,m' an expression

for ¢,.ni1.m 15 Obtained as

c

xxoN+1,m = _wct;N+1,m + wc

yyN+1,m (26)

Substituting (25) and (26) in (24) gives

Cxx;Ne1m = OCNm + BCN+1,m + Y{'wct;NH,m + ny;N+1,m} (27)
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Substituting (27) in (23) and then replacing c,, ,, by

d

a ( CN+1,m )

and using the  approximation

1 . . .
CyyN+1,m :FS}%CNHM in the resulting equation, the

required difference scheme along the boundary x = 1 is

d

I 2 2
o0 ( CN+1,m ) =77 {8x6N+l,m + 6yCN+l,m} ( 28 )
dt H
where
8§CN+1m: o CNm_6(1+HW)CN+1m
’ 3+Hw 3+ Hw ’
(_2CN+1,m +20N41,m+1 ), form =-Qy,
2

6yCN-%—l/m = (2CN+1,m—1 = 2CN+1,m )' form=Q,,

(CN+1m-1 = 2N+1,m + CNs1mar ) Otherwise.

At an interior grid point (x; y,,), the parabolic equation
(1) is discretized as

d

" (29)

1 o2 2
(Cl,m ) = _Z{chl,m + 8yCl,m}"
H
where

2 2
6xcl,m = C1,m — 200,m + C—1,m and 8yCl,m = Clm-1 = 2C0,m + €l -

Combining the discretizations (15) to (22), (28) and
(29), a system of ordinary differential equations is formed
as

d
—C(t)=(B+D)C(t)+Q (30)
dt
where
(B 0O D, O O
B=—| 0 B, Oo| b=—|0 D, 0O}
H? H
O O B, O O D,
By O Oma 01 Oy 2y 2y Oy
Bd _ Om Bml fDd _ Im _2.{m1 I.n:12
B O I, =21, I
By O Oq.+1 I =2lp h Oq.+1
O, B Ip, —-2I I
B.=| ° ™ D, =| ° ! 2 . ,
By, Og.n Iga -2l I
By O OQu Io 2Ly Iy OQu
Oy B Ly —2Iyg Iy
Bu - m m . 'Du — m ..m m ,
Bg, g, —21Q,
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The value of m in B;and D, is -Q,, and that in B, and D,
is Q. + 1. The abbreviations m1, m2, ... etc. represent m +
1, m + 2, ... etc. The matrices I; and I, are square matrices
of order N + 1 and N + 2 respectively and are given by

000 00
0 0 0 0
010 00
10 00
001 00
;=0 1 00|l =
00 01
000 01

Form =0,1,2,...,Q,, B,, are square matrices of order N + 1
and each is given by

-2 1
1 -2 1
1 -2 1
6 —6(1+Hw)
3+ Hw 3+ Hw

Form #0,1,2,...,Q,, B,, are square matrices of order N + 2
and each is given by

-2 2
1 -2 1
1 -2 1
6 —6(1+ Hw)
3+ Hw 3+ Hw

Form=0,1,...,Q,, I,,and O,, are the unit square matrix and
zero matrix of order N + 1. For m # 0,1,2,...Q,, I, and O,,
are the unit matrix and zero matrix of order N + 2. Solving
the system of ordinary differential equations given by
(30), subject to the initial condition(8), gives

C(t) =eB+D)Q - (B + D)'Q; (31)

which satisfies the recurrence relation

C (t + k) = ek(B+D) C(t) + (B + D)fl ek(B+D) Q- (B + D)l Q.
(32)

To obtain numerical solutions C(t + k), Padé approxi-
mants to the matrix exponential e3+P) may be used in
(32). A fully implicit method may be developed by first
writing (32) in the form

C(t + k) = eD efBC(t) + (B + D) 1etP ekB Q - (B + D)1 Q;
(33)

http://www.biomedical-engineering-online.com/content/3/1/18

which has O(k?) error in time. Equation (33) may be
approximated further, also with error O(k2), by introduc-
ing the (1,0) Padé approximants to the matrix exponential
functions e*P, ek and writing (33) in the split form

(I-kB)C* = C(t) + C+, (34)

(I - kD)C(t + k) = C* - (I - kD)C~.

where the vector C+is independent of time and is calcu-
lated from the equation

(B+D)C+=Q.

This fully implicit algorithm defined by (34) is first-order
accurate in time and second order accurate in space, and
is L,-stable. The accuracy in time is improved by extrapo-
lating, as in Lawson and Morris [7]. Let C° C! and C2,
defined by (35), (36) and (37), respectively, be the three
approximations to the solution of (30) at time level ¢ + 2k.
The Lawson-Morris algorithm takes the form

(I-kB)C* = C(1) + C*,
(I-kD)C(t + k) = C* - (I - kD)C*,

(I-kD)C** = C(t + k),

(I- kB)CO (t + 2k) = C** - (I - kB)C*.  (35)
(I- 2kB)C* = C(t) + C*,

(I- 2kD)C! (¢ + 2k) = C* - (1 - 2kD)C*.  (36)
(I - 2kD)C* = C(t + 2k) + C-,

(I- 2kB)C2 (¢ + 2k) = C* - (I - 2kB)C*.  (37)

Then the linear combination of these three schemes (35),
(36) and (37) defined by

CEU+2k):2C°U+2k)—%(C%t+2k)+C20+ZkD (38)

is second-order accurate in time. That is, the first-order
methods (35), (36) and (37) have been extrapolated to
achieve second-order accuracy.

The values of the flux J(¢;) and the cumulative amount of
the drug eliminated into the receptor cell per unit area
Ae(tj), at any time-level ¢ = L =jk, j=0,1,2, ....etc, are cal-
culated using the trapezoidal rule to approximate the inte-
grals in (10) and (11). Thus, for second-order accuracy,

H Q-1
“%):#;'4thfﬂ+dthﬂ+2 Y

m=—Q,+1

(L 1) (39)
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and

nef1y) =1 2§;(ti)+;(tj) (40)

Results and discussion

In order to examine the behaviour of the extrapolation
method, a number of experiments, similar to those in one
space dimension described in [3], are carried out for two
space dimensions. The parameter r was given the values
0.00001, 0.0001, 0.001, 0.2, 0.4, 0.6 and 0.8. The space
step h was given the value 0.1 so that N = 9 and the time
step k is put equal to 0.001. Also, L,= 0.5, L,=3 and L; =
2.5sothatQ,=5, Q,=30and Q,; = 25.

Figure |
Concentration profiles for r = 0.001

http://www.biomedical-engineering-online.com/content/3/1/18

Using the extrapolation technique (38), corresponding to
each value of r = 0.001, 0.2, 0.4, 0.6 and 0.8, the concen-
tration profiles at t = 0.1, t = 0.5, t = 1.0 and t = 4.0 are
given in Figures 1, 2, 3, 4, 5. These graphs show the effect
of the value of the parameter r on the accumulation of the
drug into the skin region.

Using the trapezoidal rule given in (39) and (40), the
graphs of J versus time and Ae versus time, respectively, are
plotted in Figures 6 and 7. These graphs show the effect of
the value of r on the the flux and the cumulative amount
of drug eliminated into the receptor cell.
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Figure 2
Concentration profiles for r = 0.2

http://www.biomedical-engineering-online.com/content/3/1/18

Some authors prefer to retain the dimensions of quanti-
ties, but the full range of information can be given in a
simple manner when dimensions are eliminated. The
authors believe that, for this particular study, it is more
appropriate not to use dimensions.

Conclusion

The value of r is not easy to control and the major features
relating to it include lipophilicity and the molecular
weight of the drug. Various drugs with various lipophilic-
ity and molecular weight will have different r-values, so
that the profiles will be different between drugs. The value
of r will be just one of the factors in selecting the best drug
and best vehicle (ointment) design. Various values of r

have been used to illustrate what will be predicted by the
model. Based on the profiles given, the following conclu-
sions are drawn.

From Figures 1, 2, 3, 4, 5, the following conclusions are
made.

(1) For any value of r, the flow rate towards the skin-cap-
illary boundary is larger than the flow rate near to the skin
surface. (2) For larger values of r, the difference between
the concentration near to the skin surface and the concen-
tration near to the skin-capillary boundary decreases at a
faster rate, compared to smaller values of r.

Page 7 of 13
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Figure 3
Concentration profiles for r = 0.4

http://www.biomedical-engineering-online.com/content/3/1/18

From Figures 6 and 7, however, the following conclusions
are made.

(1) As the value of r increases, the flux and the cumulative
amount of drug eliminated into the receptor cell, at a par-
ticular time, decrease. (2) As the value of r decreases, the
steady-state value of the flux increases. (3) The time
required to reach the steady-state value of the flux is
smaller for smaller values of r. (4) To the scale used, the
graphs for r = 0.00001, 0.0001 and 0.001 were found to
be coincident, and it is concluded that the value of r =
0.001 is the optimal value of r which gives the maximum
absorption of the drug into the blood stream.

The skin has a complicated structure while the model pre-
sented is simple. Though the complicacy itself does not
always preclude the successful use of a simple model, if
the major assumptions made in this model do not hold,
what will be observed may differ from what the model
predicts. For example, as to the x-axis, the skin consists of
stratum corneum and dermis. The use of a simple model for
the x-direction may be warranted because the major bar-
rier is normally assumed to be provided by the stratum
corneum, [1].

Considering the diffusion of a drug, however, where the
diffusion through dermis is a critical component, the y-
directional diffusion of drug molecules through the dermis
may also be important and what is observed will be differ-
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Figure 4
Concentration profiles for r = 0.6

http://www.biomedical-engineering-online.com/content/3/1/18

ent from what the model in this study predicts. The model
presented in this study may therefore be used to examine
the mechanism of diffusion in the y-direction.

As shown in the non-linear model in [2], which assumes
that the drug molecules are either dissolved (mobile) or
immobile inside the skin, the drug permeation profiles
are considerably different from those described in the
linear model. In this study, it was shown that the drug per-
meation described by the two-dimensional linear model
is different from that by the one-dimensional linear
model. The percutaneous drug absorption described by a
non-linear two-dimensional model will be studied in

future work and further comparison based on [2] will
then be warranted.

The mathematical model considered in this paper does
not take into account the complex, in vivo physiology of
skin. The model is developed by simplifying (or ignoring
some complexity of) the skin structure. Several models in
the literature, used to describe the kinetic behaviour of a
drug, have in fact made this simplification. These models
do not give any insight into the drug kinetics at the site
distant from the area where the ointment is directly
applied. As the title of this paper suggests, the model
described has taken into account the above issue in the
form of y-directional diffusion. That is, the time-course of
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Figure 5
Concentration profiles for r = 0.8

http://www.biomedical-engineering-online.com/content/3/1/18

the drug concentration (which may be best measured in
an in vitro study), at the site distant from the area where
the ointment is directly applied, is examined in the
present paper. No attempt has been made to relate the
model to experimental data, because the authors have no
access to experimental data which can be related to the
two-dimensional model, where the issue of the y-direc-
tional diffusion is examined. The authors hope that pub-
lication of this model will stimulate researchers to carry
out relevant experimental studies, based on diffusion in
the direction parallel to the skin surface.

This two-dimensional model improves upon the much
simpler models in one-dimension, by giving information
of the time-course of drug kinetics in the skin, where the

ointment is not directly applied, assuming that the proc-
ess can be described by a simple homogeneous mem-
brane. If what is observed is different from what this
model describes, this may give some clue to elucidate the
mechanism of y-directional diffusion of the drug (for
example, the diffusivity in the stratum corneum may be dif-
ferent between x- and y- directions or the y-directional dif-
fusion through the dermis, once it is permeated through
the stratum corneum, may change). Those features cannot
be known from one-dimensional models.
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J versus time for various values of r
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