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Abstract
Background: The stimulation of nerve or cortical tissue by magnetic induction is a relatively new
tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation
(TMS), for example, has been used for the functional mapping of the motor cortex and may have
potential for treating a variety of brain disorders.

Methods and Results: A new method of stimulating active tissue is proposed by propagating
ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created
by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An
analytical derivation is given for the electric field distribution induced by a collimated ultrasonic
beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the
upper range of diagnostic intensities. This field strength is about an order of magnitude lower than
fields typically associated with TMS; however, the electric field gradients induced by ultrasound can
be quite high (about 60 kV/m2 at 4 MHz), which theoretically play a more important role in
activation than the field magnitude. The latter value is comparable to TMS-induced gradients.

Conclusion: The proposed method could be used to locally stimulate active tissue by inducing an
electric field in regions where the ultrasound is focused. Potential advantages of this method
compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved
at greater depths in the brain than is currently possible with TMS.

Background
Much has been written in the last decade about the poten-
tial of transcranial magnetic stimulation (TMS) as a new
diagnostic and therapeutic tool in clinical neurophysiolo-
gy [1–3]. TMS is a painless and non-invasive technique for
stimulating cortical tissue by means of magnetic induc-
tion. TMS has been used to map the motor cortex by re-
cording evoked responses, and appears to show potential
for treating certain brain disorders, from Parkinson's dis-
ease to depression. A disadvantage of TMS, however, is its
inability to localize the site of excitation in the brain to a
volume less than several tens of cubic centimeters at best.
This is because the spatial distribution of the magnetic

fields cannot be effectively concentrated or focused. In
fact, because the fields obey Laplace's equation, it is im-
possible to create local maxima in the field intensity no
matter what the configuration of source coils; in a homo-
geneous conducting medium, the field strength will al-
ways be largest at the surface and fall off monotonically at
greater depths.

In this paper, we propose a different method of stimulat-
ing cortical tissue, which, in principle, could permit much
greater localization of the site of excitation as well as deep-
er penetration into the brain. The idea is to induce electri-
cal currents by propagating an ultrasonic wave in the
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presence of a strong DC magnetic field. The currents are
generated by Lorentz forces on moving ions produced by
the oscillating sound wave.1

We present here an analysis of the distribution of the elec-
tric field induced by an ideally collimated ultrasonic beam
in a homogeneous conducting medium. The analysis al-
lows us to calculate the magnitude of the electric field
strengths that can be expected, and shows that the highest
practical fields that can be induced by ultrasound, up to
about 8 V/m, are about an order of magnitude lower than
those associated with TMS. Such fields have been reported
in the literature to range between about 10 and 100 V/m
[5]. We note, however, that the spatial and temporal char-
acter of the ultrasonically-induced fields are quite differ-
ent from those induced by magnetic induction. One such
difference is that the spatial variations of the ultrasonical-
ly-induced fields are much more rapid than the fields as-
sociated with TMS since, in the former case, the fields
change on the scale of the ultrasonic wavelength (e.g., less
than a millimeter). Thus, the magnitude of the gradients
of the ultrasonically-induced electric fields can be compa-
rable to those associated with TMS, depending on the ul-
trasonic frequency (e.g., at 4 MHz, a gradient of about 60
kV/m2 is attainable). This may be significant since activa-
tion models predict that the gradient of the field, rather
than its strength, is primarily responsible for neural stim-
ulation [6,7]. However, researchers have also speculated
that field gradients induced by cellular-scale inhomoge-
neities in the tissue conductivity may play a more impor-
tant role in neural stimulation than the spatial variations
of the impressed fields [8–12]. The latter question is im-
portant in deciding whether the potentially large im-
pressed field gradients induced by ultrasound are truly an
advantage in effecting stimulation.2

A second difference between ultrasonic stimulation and
TMS that may have some practical significance for exciting
neural tissue is related to our greater freedom in control-
ling the time dependence of an ultrasonic pulse compared
to a TMS pulse. We show below that the temporal depend-
ence of the electric field (and the induced current density)
follows that of the ultrasonic waveform. Although the du-
ration of a TMS pulse is typically on the order of a few
tenths of a millisecond and the ultrasonic variation is on
the order of microseconds or less (roughly the reciprocal
of the ultrasonic frequency), considerable control over the
shape of the ultrasonic waveform is in principle possible.
For example, one can transmit an ultrasonic pulse train at
essentially any repetition frequency or modulate a contin-
uous ultrasonic wave in a variety of ways.

For neural excitation to take place, the magnitude of the
induced electric field (or its gradient) must exceed an acti-
vation threshold. It is generally believed that excitation

that is oscillatory in time makes this process more diffi-
cult. For example, simulations carried out by Reilly sug-
gest that, using a sinusoidal stimulus, the activation
threshold increases monotonically with frequency be-
yond a few kHz [15]. However, Reilly also reports that a
series of rapid pulses, where the repetition period is short
compared to the depolarization time constant (the latter
being a few tenths of a millisecond), is a much more effec-
tive stimulus than a pure sinusoid. Reilly describes this as
the "integration effect of multiple pulses." If the individu-
al pulses are monophasic, the activation threshold is con-
siderably reduced compared to a single monophasic
pulse. For example, Reilly reports that the integration ef-
fect of a series of rapid pulses, each 10 microsec in dura-
tion with a repetition rate of 50 kHz, reduces the
activation threshold by a factor of 5 relative to a single 10
microsec pulse.

A key question is whether a series of pulses of this kind
can be generated ultrasonically. Certainly, the 50 kHz rate
is feasible. A second question is whether one can create an
ultrasonic pulse that is approximately monophasic. With
some ingenuity, the answer appears to be yes. For exam-
ple, although an ultrasonic pulse must have a zero DC
component, the pulse need not be symmetric; that is, the
positive-going excursion of an ultrasonic pulse can, under
certain conditions, significantly exceed the negative-going
excursion, which would approximate a "monophasic"
waveform. A simple example of the latter can be achieved
with the aid of an ultrasonic transducer that is non-sym-
metric, e.g., a transducer whose length is much greater
than its width. In this case, there is a large positive excur-
sion followed by a much longer, but weaker, negative ex-
cursion (an ultrasonic "wake"). Another way to alter the
shape of an ultrasonic pulse is by transmitting it through
a dispersive medium that acts as an ultrasonic filter, or by
using multi-layered transducers.

Although, in our analysis, we shall for simplicity assume
a static magnetic field, an alternative approach is to use an
optimally-designed magnetic pulse produced by a con-
ventional TMS coil to bring the neural tissue close to its ac-
tivation threshold, but not exceeding it. TMS coils create
fields, although transient, in the range of 1 T to 4 T. An ul-
trasonic pulse (or series of pulses), if properly timed,
could then push the membrane potential past threshold.
In this way, the locus of activation would still be deter-
mined by the ultrasound, although deep stimulation
might still be difficult because the field intensity produced
by a TMS coil falls off rapidly with depth (a problem
avoided by using a static field). It is worth noting that the
idea of using a conditioning pulse of this kind was sug-
gested by Reilly [16], but in a somewhat different context.
Reilly proposed using two coils, one that produces a "con-
ditioning pulse" (Reilly's phrase) to achieve 75% of the
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excitation threshold; then a second nearby coil, excited by
a sinusoidal waveform (of frequency 80 kHz in Reilly's ex-
ample), would push the membrane potential beyond
threshold. His idea was that the combination of coils is
more effective in achieving greater "focality," or localiza-
tion, of the stimulus than a single coil. Using a mathemat-
ical model of neural activation, Reilly predicts that this
combination of signals, the conditioning pulse plus the
80 kHz sine wave, will achieve activation. One could spec-
ulate that, instead of the 80 kHz sinusoidal signal, the
conditioning pulse could be accompanied by a series of
ultrasonic pulses at a rate of 80 kHz (or whatever rate is
determined to be optimal). It may turn out that these
questions can only be settled by experiment, or by sophis-
ticated modeling of the neuron in the presence of a realis-
tic ultrasonic wave.

Method
Concept
Localized electric currents can be induced in tissue by
propagating ultrasound in the presence of a magnetic
field. Consider, for example, an ultrasonic pulse propagat-
ing in an electrolytic fluid (such as soft tissue) in the pres-
ence of a static magnetic field oriented in a direction
perpendicular to the propagation path. The longitudinal
particle motion due to the ultrasonic wave moves the ions
back and forth through the magnetic field; this results in
Lorentz forces on the ions that give rise to an electric cur-
rent density that oscillates at the ultrasonic frequency.
This idea was used as the basis of "Hall effect imaging"
proposed by Wen [17] in which Lorentz forces are em-
ployed to image the electrical conductivity of tissue. Mon-
talibet et al. also noted that propagating ultrasound in the
presence of a magnetic field will generate electric currents
in tissue [18]. They also proposed using this effect to
measure the electrical conductivity of tissue.

Here we propose a new application: localized stimulation
of active (nerve or cortical) tissue by ultrasonically-in-
duced electric fields. Our objective in this paper is to com-
pute the magnitude and the spatial distribution of the
these fields. We shall show that analytical solutions for
the field distribution can be derived for an ideally colli-
mated ultrasonic beam.

Theory
Consider an ion in a conductive medium with charge q.
The longitudinal particle motion of an ultrasonic wave
will cause the ion to oscillate back and forth in the medi-
um with velocity v. In the presence of a constant magnetic
field, B0, the ion is subjected to the Lorentz force

F = qv × B0.  (1)

This produces an electric current density given by

J0 = (n+u+ + n-u-)F,  (2)

where u+ and u- are the mobilities of the positive and neg-
ative ions (assumed to have charges of q and -q, respective-
ly), and n+ and n- are their concentrations. Combining (1)
and (2) gives

J0 = q(n+u+ + n-u-)v × B0.  (3)

But the electrical conductivity, σ, of the medium is given
by

σ = q(n+u+ + n-u-),  (4)

so that

J0 = σv × B0.  (5)

A typical value of the conductivity of tissue is 0.5 Siemens/
m. In the most general case, the conductivity σ may be re-
garded as a complex quantity to account for polarization
(or displacement) currents at higher frequencies. From
(5), the equivalent electric field is

E0 = v × B0.  (6)

The field, E0, and the current density, J0, oscillate at the ul-
trasonic frequency in a direction mutually perpendicular
to the propagation path (the direction v) and the magnet-
ic field B0.

For convenience, we assume harmonic excitation of the
ultrasonic wave of the form exp(-iωt). Since all our equa-
tions are linear, an arbitrary time dependence can be treat-
ed by Fourier synthesis. In the following, the time
dependence of all quantities, both ultrasonic and electro-
magnetic, will be exp(-iωt), so this factor is dropped. The
ultrasonically-induced current density J0 can be regarded
as an impressed current density that gives rise to scattered
(or secondary) electric and magnetic fields Es and Bs that
obey the Maxwell's equation

 × Bs = µ0σEs + µ0J0,  (7)

where µ0 is the free-space magnetic permeability. Dielec-
tric properties of tissue can be accounted for by replacing
σ everywhere with σ - iωε where ε is the tissue permittivity.
At a frequency of about 1 MHz and using typical values for
tissue, the quantity ωε will be one to two orders of magni-
tude less than σ.

Substituting (5) and (6) into (7), we have

 × Bs = µ0σ(Es + E0).  (8)

∇

∇
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In this equation, the impressed electric field is E0, given by
(6), and Es is the induced electric field whose source is the
Lorentz-induced current density (5). The total electric
field is the sum

E = Es + E0,  (9)

and the total current density is

J = σEs + J0 = σE.  (10)

Here our objective is to compute the induced field, Es, to
be substituted into (9) to obtain the total field, E.

To solve this problem, consider a collimated ultrasonic
beam propagating in the z-direction, assumed here to
have axial symmetry with a radial profile given by p(r),

where . The particle velocity is then given

by:

where v0 is the peak particle velocity,  is the z-directed
unit vector along the beam axis, k0 = ω/c0, and c0 is the ul-
trasonic wave speed. Although this beam is idealized (e.g.,
it neglects spreading), (11) is a reasonable approximation
to a focused ultrasonic beam in the region of its focus. In

the presence of a magnetic field B0 = B0 , the resultant
Lorentz-induced current density is predicted by (5) to be:

J0(r) = B0v0σp(r) .  (12)

When this current density is substituted into (7), one can
solve for the induced electric field, Es, using standard tech-
niques. As shown in the appendix, the components of Es
in cylindrical coordinates are found to be

where

and I0(·) and K0(·) are modified Bessel functions of the
first and second kind. At this point, for an arbitrary beam
profile p(r), one must resort to a numerical integration of
(16). However, the integrals can be evaluated analytically
for the special case of an ideally collimated ultrasonic
beam whose radial profile is defined by

where a is the beam radius. Substituting (17) into (16),
we find [19]:

Inserting this result into (13)-(15), we obtain the compo-
nents of the induced electric field Es, as follows. Inside the
beam (r <a), we have

Er(r,φ,z) = B0v0Pr(r)  sin φ  (19)

Eφ(r,φ,z) = B0v0Pφ(r)  cos φ  (20)

Ez(r,φ,z) = B0v0Pz(r)  sin φ  (21)

where

Pz(r) ≡ -ik0a K1(k0a) I1(k0r),  (24)

and outside the beam (r >a),

Er(r,φ,z) = B0v0Qr(r)  sin φ  (25)

Eφ(r,φ,z) = B0v0Qφ(r)  cos φ  (26)
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Ez(r,φ,z) = B0v0Qz(r)  sin φ  (27)

where

Qz(r) ≡ -ik0a I1(k0a) K1(k0r).  (30)

On the beam boundary (r = a), the tangential components
of the electric field are continuous as expected; that is, Pφ
(a) = Qφ (a) and Pz (a) = Qz (a). This can be checked by set-
ting r = a in the above equations and using the identity
[20]

By comparing Pr(a) and Qr(a), however, we see that the ra-
dial component of the field is discontinuous on the
boundary, indicating charge accumulation there. This
charge, of course, oscillates at the ultrasonic frequency.
The radial electric field discontinuity is seen to be

∆E = B0v0[Qr(a) - Pr(a)] sin φ  = B0v0 sin φ ,
(32)

where (31) was used in the last step. This result can be em-
ployed to compute the surface charge density, ρs, on the
beam boundary by means of the relation ρs = -ε∆E, where
ε is the tissue dielectric constant.

It can be shown that the radially-dependent terms (22)-
(24) and (28)-(30) achieve their maximum values near r
= a, that is, near the beam boundary. In this region, the
terms with k0r in the denominator can be neglected com-
pared to the other terms. Thus, the dominate terms when
r is near a are given by:

for r <a,

Pr(r) = -B0v0k0a K1(k0a) I0(k0r)  (33)

Pφ(r) = 0  (34)

Pz(r) = -iB0v0k0a K1(k0a) I1(k0r),  (35)

for r >a,

Qr(r) = B0v0k0a I1(k0a) K0(k0r)  (36)

Qφ(r) = 0  (37)

Qz(r) = -iB0v0k0a I1(k0a) K1(k0r).  (38)

Let us evaluate these functions on the beam boundary (r
= a). The arguments of the Bessel functions are k0a = 2πa/
λ, so that, for a greater than a few wavelengths, we can use
the large argument asymptotic approximations [21]:

which gives

where we have defined E0 ≡ B0v0 as the magnitude of the
impressed electric field, as seen from (6).

Several comments about this solution are worth noting.
First, for a beam with a perfectly (and unrealistically)
sharp boundary at r = a, the radial component of the elec-
tric-field gradient is infinite on the boundary. This is a
mathematical artifact of our solution since the electric
field is discontinuous at r = a. For a real beam, the transi-
tion is much more gradual (on the order of an ultrasonic
wavelength or more), and charge distribution on the
beam boundary will be distributed over this transition re-
gion. A second point is that a numerical integration of
(16) for a more realistic beam profile, p(r), that falls off
more smoothly than (17), such as a Gaussian profile, re-
sults in an electric field smaller in magnitude at the beam
boundary than that given by (39) and (40). Thus, the
above analytical solution provides a useful, but very qual-
itative, picture of the field behavior at the beam boundary.
It can also be seen from the expressions (22)-(24) that the
induced field is near zero at the center of the beam (r = 0).
In fact, (24) predicts that the z-component of the induced
field is exactly zero at r = 0 and that the other components
are very small compared to E0 at r = 0. The latter state-
ments also hold true for a Gaussian beam profile, as a nu-
merical integration shows. This is a consequence of the
fact that Es arises essentially due to charge accumulation in
the vicinity of the beam boundary. Thus, on the beam ax-
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is, the total electric field, E0 + Es, is close to the Lorentz in-
duced field E0.

We next consider the gradient of the electric field. For ac-
tivation, we are interested in the rate of change of the com-
ponent of the electric field along the direction of the axon.
If we regard the significant field as E0 only, then we note
that this field is perpendicular to the beam axis, while the
largest component of the gradient points along the beam
axis and is given by the derivative of E0 with respect to z.
If the axon is oriented at an angle α with respect to the
beam direction, then the component of the electric field
along the direction of the axon is E0 sin α. Now the rate of
change of this component along the axon direction is the
derivative of E0 sin α with respect to the distance meas-
ured along the axon, which is (ik0 cos α)E0 sin α. The mag-
nitude of this quantity is largest for α = ± 45° and equals
k0E0/2 = k0B0v0/2. In the next section, we estimate the size
of E0 and the gradient k0E0/2 for a practical example.

Results and Discussion
Here we estimate the peak electric field that can be safely
induced using ultrasound at the upper range of diagnostic
intensities. A key parameter in computing the field
strength is the particle velocity generated by the ultrasonic
wave. The peak particle velocity, v0, can be related to the
peak pressure, p0, of the wave using the relation

where ρ is the tissue density and c0 is the sound speed.
Measurements performed by Duck [22] using two mod-
ern commercial ultrasonographic scanners have demon-
strated instantaneous peak pressures in excess of 4 MPa at
the focal point of the transducer. 3 (Although this pressure
translates into an intensity that considerably exceeds the
temporally-averaged FDA limit of 0.7 W/cm2 for diagnostic
systems, the instantaneous intensities are generally far
higher than the latter value.)

Using the values of p and c0 for water, the above formula
gives a peak particle velocity, v0, of 2.67 m/s. To estimate
the magnitude of E0 for a typical set of parameters, we as-
sume a magnetic field strength of 1.5 Tesla, which is typi-
cal of whole body MRI magnets. This gives E0 = 4 V/m. The
electric field strength can, of course, be enhanced by in-
creasing the magnetic field B0. Although 1.5 T is a typical
MRI field strength, 3 T systems have recently become
available. This field strength would double the peak elec-
tric field to E0 = 8 V/m. It may be worth noting that a high-
field magnet with a smaller bore designed to accommo-
date only the head would be much less costly than the
whole-body machines with much larger bore diameters.

In general, smaller bore magnets are also more suitable for
high-field applications. Finally, the very high magnetic
field homogeneity needed for imaging is not required in
this application, which would further reduce costs.

We next estimate the maximum gradient of the electric
field, given earlier by k0E0/2. The particle velocity quoted
above was measured for an instrument operating at an ul-
trasonic frequency of 4 MHz [22]. Using E0 = 8 V/m, we
obtain an electric field gradient of k0E0/2 = 67 kV/m2 at
this frequency. This is of the same order of magnitude of
the activation thresholds computed by Hsu and Durand
[23].

Conclusion
Although the strength of the ultrasonically-induced elec-
tric fields is about an order of magnitude below that of
TMS generated fields, there are differences in the spatial
and temporal character of these fields that may have some
practical consequences. The first point is that the ultrason-
ically-induced electric field gradients are comparable to
typical TMS gradients, because the ultrasonically-induced
fields pass from maximum to minimum in a much shorter
distance, i.e., approximately half the ultrasonic wave-
length (a fraction of a millimeter). A second point is that
one can exercise greater control over the temporal shape
of the ultrasonically-induced electric fields compared to
TMS-induced fields. For example, the excitation can be os-
cillatory ("polyphasic") or not (approximately
"monophasic," with a sharp upgoing excursion followed
by a weaker, but longer negative going excursion). Pulses
can be applied in very rapid sequence, or a continuous
wave can be modulated in a variety of ways.

We also mentioned the possibility of using a conventional
TMS coil to generate a strong, but transient, magnetic field
that could be applied during the transmission of the ultra-
sound. That is, the function of the TMS pulse would be to
bring the membrane potential near threshold, but not to
exceed it. The ultrasonic pulse (or pulses) would then
push the potential past threshold. One could speculate
that near threshold, where the membrane nonlinearity is
strong, a sinusoidal stimulus may be effective in achieving
activation due to some partial rectification of the sinusoid
[24].

We conclude by noting that the same technique could be
used in principle to stimulate any type of excitable tissue,
not just cortical tissue, including, for example, peripheral
nerve tissue. Finally, it may turn out that the ultrasonical-
ly-induced fields are simply too weak for effective stimu-
lation, although this remains to be established. Answers
to these questions may have to await experimental work
or further modeling of the electrophysiology of neural ac-
tivation.

v
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Appendix: Derivation of the Induced Electric 
Field
Here we wish to solve the Maxwell equation

 × Bs = µ0σEs + µ0J0  (A1)

for Es where J0 is given by (12). The problem is most easily
solved by writing the magnetic and electric fields, Bs and
Es, in terms of vector and scalar potentials A and Φ:

Bs =  × A  (A2)

Es = iωA - Φ.  (A3)

Substituting (A2) and (A3) into (A1) and using the iden-

tity  ×  × A = (  · A) - 2A, results in

(  · A) - 2A = iωµ0σA - µ0σ Φ + µ0J0.  (A4)

It is convenient to use the Lorentz gauge, defined by [25]

which results in two uncoupled equations for the poten-
tials A and Φ. Substituting (A5) into (A4), we obtain

2A + γ2A = -µ0J0,  (A6)

where γ2 = iωµ0σ, and (A3) becomes upon substituting
(A5)

The solution to the vector Helmholtz equation (A6) is giv-
en by the following volume integral:

where  = (1 + i)/δ and  is the

electromagnetic skin depth in the tissue. The exponential
term in the integrand of (A8) can be replaced by unity
when δ Ŭ|r - r'|. For example, at a frequency of 1 MHz and
conductivity of 0.5 S/m, we find δ = 71 cm. Thus, to an ex-
cellent approximation, (A8) may be replaced by:

We now argue that the first term on the right-hand side of
(A7) is much smaller than the second term. In fact, the
magnitude of the first term is smaller than the second
term by a factor of the order (λ/δ)2, where λ is the ultra-
sonic wavelength and δ is the electromagnetic skin depth
in tissue. This can be demonstrated rigorously for the case
of the ideally-collimated ultrasonic beam treated in the
main text, but a plausibility argument can be given as fol-

lows. The term  ( ·A) in (A7) indicates terms that are
second derivatives of the spatial dependence of the ultra-

sonic beam, which will be of the order A. Then the ra-

tio of the first term in (A7) to the second term is ωµ0σ/

= λ2/(2π2δ2), where  is the skin depth and
λ = 2π/k0 is the ultrasonic wavelength. At an ultrasonic fre-

quency of 1 MHz, this ratio is on the order of 10-6. Thus,
neglecting the first term in (A7), we have

Next, substituting (12) into (A9), we see that the only
non-zero component of A is its y-component, i.e., A =

Ay , so that (A9) becomes on writing the variables in cy-
lindrical coordinates:

We now employ the expansion of 1/|r - r'| in cylindrical
coordinates [26]:

where Im(·) and Km(·) are the modified Bessel functions
of the first and second kind of order m. In (A12), r<is the
smaller of r and r', and r>is the larger. Substituting (A12)
into (A11), interchanging orders of integration, and per-
forming the φ' integral, only the m = 0 term survives, giv-
ing

∇

∇

∇

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇

Φ = − ∇ ⋅ ( )1
5

0µ σ
A, A

∇

E A As i= + ∇ ∇ ⋅( ) ( )ω
µ σ

1
7

0
. A

A r
J r

r r
r

r r

( ) = ′( )
− ′

′ ( )
− ′

∫
µ
π

γ
0 0 3

4
8

e
d

i | |

| |
, A

γ ωµ σ= i 0 δ ωµ σ= 2 0/

A r
J r

r r
r( ) = ′( )

− ′
′ ( )∫

µ
π
0 0 3

4
9

| |
.d A

∇ ∇

k0
2

k0
2

δ ωµ σ= 2 0/

E As = ∇ ∇ ⋅( ) ( )1
10

0µ σ
. A

ŷ

A r z
B v

r dr p r dz e dy
ik z, ,

| |
.φ µ σ

π
φ

π( ) = ′ ′ ′( ) ′ ′
− ′

′
−∞
∞
∫ ∫0 0 0

0

2

4
1

0

r r
A111

0
( )∞

∫

1 2
0| |

cos
r r− ′

= − ′( )  ( ) ( )− ′( )∞

=−∞

∞

< >∫∑π
φ φdke k z z I kr K krim

m
m m ,, A12( )

A r z
B v

r dr p r dk dz e k z z Iy
ik z, cos( ) = ′ ′ ′( ) ′ − ′( ) 

∞ ∞ ′∫ ∫0 0 0
0 0

0
µ σ
π 00 00

13kr K kr< >
∞ ( ) ( ) ( )∫ . A
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Next the integration with respect to z' is performed by not-
ing that

where δ(·) is the Dirac delta function. Substituting this
into (A13) and integrating with respect to k gives:

For brevity, we write this as

Ay(r, z) = B0v0µ0σA(r) ,  (A16)

where

Noting that A = Ay, we have

Finally, substituting this into (A10) and noting that

, we obtain (13)-(15).

Footnotes
1Fry appears to have been the first person to propose using
ultrasound to stimulate the brain, although by means of a
very different mechanism [4]. His idea was to transmit ul-
trasound in the presence of an oscillating electric field of
the same frequency. The periodic variation of the electrical
conductivity of the tissue created by the slight variation in
thermal expansion arising from the oscillating sound
wave would, in principle, produce a partial rectification of
the applied field, resulting in a small amount of unidirec-
tional electric current. The resulting unidirectional charge
transfer, Fry speculated, could stimulate neural tissue.
However, to succeed, the method requires extremely in-
tense ultrasonic pulses (from 10 to 50 kW/cm2) and a very
strong electric field (producing current densities on the or-
der of amps/cm2). As far as this author is aware, Fry's
method has not been tried.

2A great deal has been written on the subject of what tem-
poral and spatial features of the stimulating fields are re-

sponsible for activation. Early work by Rattay suggested
that the "activation function," essentially the gradient of
the electric field along the axis of the axon, is a key con-
tributor [6]. Other researchers pointed out that this gradi-
ent is determined not only by the variations in the
impressed field, but also by conductance variations in the
axon due to bends, terminations and other departures
from a straight line that may perturb the local boundary
conditions. Also, the shape and duration of the stimulat-
ing pulse play an important role. It has been noted that
the time and space dependence of the activating function
mutually interact in a way that may make the effects of
each difficult to treat independently [13,14].

3Note that we are assuming that the maximum intensity
occurs at the focal point of the transducer. This is generally
true if the ultrasound is sufficiently focused, but may not
be true for a weakly focused transducer when the beam
passes through an intervening medium that is very atten-
uating (such as the skull).
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