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Abstract

Background: The notion of the nucleus tractus solitarius (NTS) as a comparator
evaluating the error signal between its rostral neural structures (RNS) and the
cardiovascular receptor afferents into it has been recently presented. From this
perspective, stress can cause hypertension via set point changes, so offering an
answer to an old question. Even though the local blood flow to tissues is influenced
by circulating vasoactive hormones and also by local factors, there is yet significant
sympathetic control. It is well established that the state of maturation of sympathetic
innervation of blood vessels at birth varies across animal species and it takes place
mostly during the postnatal period. During ontogeny, chemoreceptors are functional;
they discharge when the partial pressures of oxygen and carbon dioxide in the
arterial blood are not normal.

Methods: The model is a simple biological plausible adaptative neural network to
simulate the development of the sympathetic nervous control. It is hypothesized that
during ontogeny, from the RNS afferents to the NTS, the optimal level of each
sympathetic efferent discharge is learned through the chemoreceptors’ feedback. Its
mean discharge leads to normal oxygen and carbon dioxide levels in each tissue.
Thus, the sympathetic efferent discharge sets at the optimal level if, despite maximal
drift, the local blood flow is compensated for by autoregulation. Such optimal level
produces minimum chemoreceptor output, which must be maintained by the
nervous system. Since blood flow is controlled by arterial blood pressure, the long-
term mean level is stabilized to regulate oxygen and carbon dioxide levels. After
development, the cardiopulmonary reflexes play an important role in controlling
efferent sympathetic nerve activity to the kidneys and modulating sodium and water
excretion.

Results: Starting from fixed RNS afferents to the NTS and random synaptic weight
values, the sympathetic efferents converged to the optimal values. When learning
was completed, the output from the chemoreceptors became zero because the
sympathetic efferents led to normal partial pressures of oxygen and carbon dioxide.

Conclusions: We introduce here a simple simulating computational theory to study,
from a neurophysiologic point of view, the sympathetic development of
cardiovascular regulation due to feedback signals sent off by cardiovascular
receptors. The model simulates, too, how the NTS, as emergent property, acts as a
comparator and how its rostral afferents behave as set point.
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Introduction
In a previous review paper, we collected sufficient evidence to advance the notion of

the nucleus tractus solitarius (NTS) as a comparator evaluating the error signal

between its rostral neural structures (RNS) and the cardiovascular receptor afferents

into it [1]. Mean arterial long-term blood pressure (MAP) is regulated by the feedback

of chemo and cardiopulmonary receptors, and the baroreflex would stabilize the short

term pressure value to the prevailing carotid MAP; besides, the discharge rates of RNS

projections to the NTS would function as the set point of the closed and open loops

of cardiovascular control. Even with a set point, since the feedback open loop gain is

very low [2], the MAP can be modified varying such gain, so partially explaining why

there are different ways to control hypertension. From this perspective, Guyton’s ques-

tion posed in 1991 [3] (how can stress cause hypertension?), when he noted that many

prominent researchers believe that much, if not most hypertension in human beings is

initiated by nervous stress, may find the following answer: If the set point changes.

Even though the local blood flow to tissues is influenced by the level of circulating

vasoactive hormones and also by local factors, including metabolites and endothelial

substances, there is yet significant sympathetic control, as well expressed by Hilton and

Spyer, in 1980, and also by Shepherd, in 1983 [4,5] when the latter noted that “the role

of the sympathetic nerves may be to modulate the local dilator mechanism to maintain

the most economical ratio of blood flow to oxygen extraction“. Kidneys, too, are under

sympathetic control; they regulate the renal blood flow, the glomerular filtration rate,

the reabsorption of water, sodium and other ions, and the release of renin, prostaglan-

dins, and other vasoactive substances, as stated by DiBona, in 1982 [6]. It is well estab-

lished that the state of maturation of sympathetic innervation of blood vessels at birth

varies across animal species and it takes place mostly during the postnatal period,

reported Bevan et al, in 1980 [7].

During ontogeny, chemoreceptors are functional; they discharge when the partial

pressure of oxygen and carbon dioxide in the arterial blood are not normal, i.e., differ-

ent from the average 95 and 40 mmHg, respectively, reported Itskovits and Rudolph,

in 1987 [8], and Boekkooi et al, in 1992 [9]. These receptors are involved not only in

the nervous control, but also in the renin mechanisms [10]. The baroreflex is also

functional and the cardiovascular responses to perturbations of the feedback loop

(such as electrical stimulation) are similar to those in adult animals, which was demon-

strated by Shinebourne et al back in 1972 [11]. However, the baroreflex is not involved

in the long-term regulation; a few authors, though, propose to revise such almost tradi-

tional assertion, as further discussed below. Cardiopulmonary reflex is impaired early

in life and increases with maturation, but there is evidence that central integration of

cardiopulmonary vagal afferent input is fully functional in the term fetal and newborn

sheep [12]. During this period, the role of the humoral and autoregulatory mechanisms

is particularly important because the nervous control is not fully developed, a fact well

addressed by Geis et al [13], Dworkin [14] and Tucker and Torres [15], the latter in

1992. Some researchers postulate that plasticity during ontogeny is influenced by indi-

vidual environmental interactions, as for example Cohen and Randal [16]. Besides, the

developing regulatory neural mechanisms adapt to environmental and behavioral con-

ditions, documented by Friedman et al [17], Dworkin and Miller [18] and later on, in

1977, by the same Dworkin [19].
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Mannard and Polosa, in 1973 [20], found that the sympathetic efferent system in

animals has a characteristic interval histogram with a mean discharge rate. In the

model presented here, the development of the nervous control of each sympathetic

efferent is shaped in such a way that its mean discharge rate leads to normal oxygen

and carbon dioxide levels in each tissue. Thus, and it should be stressed, the sympa-

thetic efferent discharge sets at the optimal level if, despite maximal drift, the local

blood flow is compensated for by autoregulation. Such sympathetic efferent optimal

level produces minimum chemoreceptor discharge and this is what the nervous system

has to maintain. During ontogeny, the case may be that chemoreceptors discharge

even when some tissues are well irrigated because some others are not. Nevertheless, if

the system evolves so that the sympathetic efferent to each tissue under control has a

discharge rate near the optimal level, fewer tissues will be poorly irrigated. When the

role of the cardiopulmonary set is well understood, it could easily be included in the

model because the latter converge into the same pool of central neurons, as the arterial

receptors act in a similar way, according to Spyer in his 1981 and 1990 reports [21,22].

After development, the cardiopulmonary reflexes play an important role in controlling

efferent sympathetic nerve activity to the kidneys and modulating sodium and water

excretion, as shown by Kopp et al, in 1991, and by Peterson et al, in 1992, [23,24].

Herein, we introduce a simple neural network model to study from a neurophysiolo-

gic point of view how the NTS has the emergent property of a comparator and how its

RNS afferent pathway signals act as the set point.

Materials and methods
Overall description

This is a computer iterative model based on information collected from the literature at

large and from the authors’ own experimental data. To start with, let us refer to Figure 1,

reproduced from Zanutto et al [1], where the output from the baro, cardiopulmonary and

chemoreceptors (point C) is one of the inputs to the comparator and the output from the

vasomotor center VMC, in the medulla (point Ek), goes to the neuromechanical transdu-

cers that control the arteriolar contractile elements CE. If now, instead, we refer to Figure

2, also reproduced from Reference [1], those same points link, respectively, to the nucleus

tractus solitarius NTS (the comparator) and to the blood vessels. Figure 3 is a functional

diagram describing blood gases partial pressures, as a “tiny devil” imaginary observer

moves from tissues to lungs to the chemoreceptors to the manifold inputs (point C) at the

comparator level of the central nervous system CNS. Obviously, branching off at point C

is manifold because of the huge number of nerve fibers with many outputs Ek from the

comparator elements after subtraction from the same number of references Rk (which, in

the end, conform the set point). Those signals Ek (nerve action potentials at a given rate)

act upon the vasculature smooth muscles to control the vessel lumens, which in turn,

would let a higher or lower blood flow Fk; hence, the relationship is inverse, i.e., the higher

the neural discharge, the lower the blood flow through that particular arteriole to tissue k,

where k is a running integer (1 <k < N). The vasculature supplies blood to the tissues

where, as the blood flow increases, the partial pressures of oxygen and carbon dioxide,

respectively, go up and down (Figure 3, middle part). Thereafter, blood returns to the pul-

monary circulation to replenish its oxygen load and discharge the carbon dioxide overload.

For oxygen, arterial partial pressure increases as its input venous counterpart goes up,
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Comp, comparator; neural reference R; error signal E after the difference against the outflow from the baro,
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Point C, output from the baro, cardiopulmonary and chemoreceptors; Point Ek, output from the vasomotor
center VMC, in the medulla. Reproduced after Ref (1).
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however, beyond a given value of the latter, the former tends to a plateau because red cells

reach saturation; for carbon dioxide, instead, the situation is different producing a concave

relationship, that is, CO2 stays rather constant while venous partial pressure of CO2 gets

higher until it starts to steadily grow after a given threshold. Clearly, the input partial pres-

sures depend on each particular situation, say, normal resting condition, mild or heavy

exercise, or perhaps a respiratory or metabolic pathology. Their arterial levels, after the

pulmonary exchange takes place, are detected by the chemoreceptors (represented in the

lower block parametric relationship) from where we get back to point C, as the weighted

input to the different comparator neural cells.

An adaptive model of the circulatory system nervous control

Some RNS links to the NTS are involved in learning as well as other nervous struc-

tures of the medulla and the mesencephalon [25,26]. However, it is not well known

which nervous structures are involved. Anyhow, we are interested in simulating the

plastic effect in a very simple and biologically plausible manner. In the simulation, we

consider that the information fedback by chemoreceptors controls the plastic adaptive

process in such a way that the synaptic changes will produce the optimal level of sym-

pathetic efferent discharge. This process was simulated with a neural network, with

one node to control each tissue bed or organ (to consider the general case, but one

node could control blood flow to several tissues) and the plastic changes would take

place in one synapse for each node. We assume that if there are saturation effects,

they do not affect the plasticity during development. Because of that, it is also
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Figure 3 Neural network model of the simpathetic regulation. For each tissue (k), the sympathetic
efferent discharge (Ek), the blood flow (Fk), the venous partial pressure of oxygen and carbon dioxide
(pO2vk) and (pCO2vk), and the arterial partial pressure after the lung gases diffuse (pO2a) and (pCO2a) are
shown. Finally chemoreceptors discharge (C) is depicted. Rk represents the rostral neural nuclei inputs from
the NTS, and Wrk and Wck represent the synaptic weights.
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supposed that the error signal (between the RNS projections to the NTS and the feed-

back inputs) controlling each tissular bed would cause similar proportional effect over

each sympathetic efferent.

Computer simulation

The model is represented in Figure 3, where only those structures involved in the plas-

tic process are considered for a given time t. There are N nodes and each node k has

two inputs, one from the chemoreceptors and another from the RNS to the NTS of

the CNS. The node output Ek represents the mean discharge rate of the sympathetic

efferent that controls blood flow to that tissue k. During development, the system pro-

duces an Ek to cause minimum chemoreceptor outflow. From the Ek to a given tissue,

its blood flow Fk is simulated by a hyperbola (Figure 3, left-hand block; see also Celan-

der, [27]), that is,

Fk =
0.05
Ek

(1)

where Ek takes values between 0.05 and 1; the numerical value 0.05 is an arbitrary

small constant and 1 bounds the curve to a non-zero level. Under normal metabolism,

the describing curves of oxygen and carbon dioxide partial pressures at the capillary

venous end (including the interstitial fluid), both as functions of blood flow, are

assumed to be the same for all beds (typical of any well-behaved exchanger). Hence,

gas partial pressures within each tissue are simulated by an exponential and by a

hyperbola, respectively (Figure 3, middle block, top and bottom curves; see [28], Guy-

ton, 1986), so that the following equations can be written down,

pO2 vk = 95
(
1− 0.715 e−2.13 fk

)
, for oxygen (2)

pCO2 vk =
0.6

fk
0.92 + 40, for carbon dioxide (3)

where pO2vk and pCO2vk are both measured in mmHg. These represent the average

values, but in extreme cases as in muscles under vigorous exercise, the pO2vk could

drop as low as 3 mmHg whereas pCO2vk could increase up to 90 mmHg [29]. Besides,

it is assumed that the central venous partial pressures result from the Gaussian ran-

dom additional mixture of the venous blood pressure in all tissues. Thus, the equations

used were as follows,

pO2v =

N∑
k=1

pO2vk · (0.925 · nk + 0.075)

N∑
k=1

(0.925 · nk + 0.075)

(4)

pCO2v =

N∑
k=1

pCO2vk · (2− nk)

N∑
k=1

(2− nk)

(5)

each, respectively, describing the venous oxygen and carbon dioxide partial pressures,

where nk’s are Gaussian random numbers between 0 and 1, with a mean value of 1,

and a standard deviation of 0.5 (underlining that only the left half of the curve is
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considered). The arterial gas partial pressures coming out from the lungs are calculated

as functions of the central venous partial pressures. As blood flows along the pulmon-

ary capillaries, it receives oxygen from the alveoli and delivers carbon dioxide to them.

Thus, concentration gradients for these two gases develop along the pulmonary capil-

laries, increasing for oxygen and decreasing for carbon dioxide. The perfusion of oxy-

gen O2 follows a potential function while carbon dioxide CO2 does it as a decremental

exponential function (see Milhorn and Pulley, Ref 30).

If the partial pressures of oxygen pO2 and carbon dioxide pCO2 in the alveoli are 104

mmHg and 40 mmHg, respectively, and the venous blood pressures are pO2v = 40

mmHg and pCO2v = 45 mmHg, then the arterial blood partials would be normal, that

is, 95 mmHg for oxygen pO2a, and 40 mmHg for carbon dioxide pCO2a. This phe-

nomenon occurs in approximately one third of the time available to diffuse [30].

Therefore, even for values of pO2v lower and pCO2v higher than those mentioned

above, if there is enough time to diffuse, the arterial partial pressures would be normal.

With shorter diffusion times or if pO2v is lower than a threshold and pCO2v is higher

than another threshold, gas diffusion would not be sufficient and the exchange

becomes impaired. Since in the present model these phenomena occur within a feed-

back loop, knowing their exact mathematical form loses significance. Herein, when

pO2v is lower than 39.55 mmHg and pCO2v is higher than 45.2 mmHg, gas diffusion

in the alveoli is taken as abnormal. In this case, the arterial partial pressures vary from

the optimal levels following a linear law, that is,

pO2a = pO2v + 55 mmHg (6)

and

pCO2a = pCO2v− 5mmHg (7)

Chemoreceptors increase their discharge exponentially if the O2 concentration

decreases or CO2 concentration increases from the normal levels [31]. This function is

formalized as,

C = 15 · (c1 · e−c2·pO2a − 0.126
)

(8)

where

c1 =
72

pCO2a
(9)

and

c2 = 0.2175 · e−0.06525·pCO2a + 0.012 (10)

The output from each network node k is calculated as the difference between its two

inputs [32] or, in mathematical form,

Ek = G(Sk) where Sk = Wrk · Rk −Wck · C (11)

where Rk (which is a random number ranging from 0.1 to 0.9) is the discharge rate

of a RNS afferent, C represents the chemoreceptor discharge rate, Ek stands for the

axon discharge rate, Wrk is the synaptic weight of the RNS input, and Wck is the
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chemoreceptor synaptic weight. The function G is chosen as a sigmoid, that is,

EK = 1
/
(1 + e(−11·Sk+2.94)) (12)

The values of Wck are equal to 1 and those of Wrk are calculated based on Hebb’s

law [33], in turn accepting also experimental evidence, as that given by Brown et al

[34]. The usual formalization of this law assumes that the synaptic weight increases if

there is activity both at the output and input of the neuron simultaneously; however,

the latter is not realistic because it only allows unidirectional changes. Kohonen, back

in 1982 and 1988 [35,36], modified this formula adding a negative term proportional

to the synaptic weight multiplied by the output value of the node and assuming that

there exists a competition on synaptic resources within the cell. He also said that it

resembles the teaching rule of the Perceptron [37] except that the corrections are

always in the same direction of the input values. Here, for each neuron k, the synaptic

weight has to maintain its value if there is no chemoreceptor discharge. If the gases

partial pressures are not correct, C is greater than zero, and the synaptic weight has to

be diminished. Because of that, the coefficient bt in Equation (13) below is multiplied

by (1 + C). In this way, the synaptic weight in each iteration t is calculated as,

Wr(t+1)k = Wrtk + [αt · Rk − βt ·Wrtk · (1 + C)] · Ek (13)

Where Wr(t+1)k are the values of Wrk to be computed in the next iteration (t+1) and
Wrtk are the values of Wrk in the actual iteration (t, as used in equation 11). Besides,

Ek and C stand for values of the current iteration. To show the effect of the synaptic

weight in the plasticity process, the values of at and bt are considered as constant.

Besides, to simulate learning in a critical period, these values have to decrease with

time t; say, they could follow a hyperbolic function. In both cases, there are no differ-

ences in the simulated values of the partial pressures of gases and the sympathetic and

chemoreceptor discharge rates stabilize in the same way.

Results
The model only simulates the sympathetic development process; it does not include

any other type of regulation [1]. The evolution of cardiovascular variables due to plasti-

city, arterial and venous blood partial pressures (Figures 4, 5, 6, & 7) and chemorecep-

tor discharge rate (Figure 8) were simulated for N = 50 tissues by iterations, from 1 to

1000. Learning was accepted as completed once the partial pressures of gases reached

optimal asymptotic values with no chemoreceptor discharge. To simulate the delay of

closed loop, C was computed as the mean value of the last 3 iterations. The constant

values to compute the synaptic weight were at = 0.001 and bt = 0.005. Starting from

random synaptic weight values for Wrk between 0 and 1, the node outputs Ek con-

verged to the optimal values. In the successive iterations, the values of Wrk and the

node outputs Ek converged always to fixed values. In the first 130 iterations, Ek con-

verged in an oscillatory way (Figure 9), followed by the chemoreceptor discharge rate

(Figure 8). Convergence continued without oscillations up to the end near the 1000th

iteration. When learning was completed, the output from the chemoreceptors became

zero because Ek leads to normal partial pressures of oxygen (Figures 4 and 6) and car-

bon dioxide (Figures 5 and 7). These results are independent of the number of tissues.
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To simulate learning in a critical period, the values of at and bt must diminish with

time t. For example, they could follow a hyperbolic function. In the simulation, there

are no differences in the evolution of the partial pressures of gas values. Furthermore,

the sympathetic and chemoreceptor discharge rates stabilize in the same way. In this

case, C can be removed from the learning rule (Equation 13) without any important

change in synaptic weights. The only significant change appears when the neural net-

work outputs have very small oscillations, depending on the values of at and bt.

Discussion and conclusions
Physiological experiments show that denervation of all the cardiovascular receptors

(baro, chemo and cardiopulmonary) leads to sustained hypertension. Based on this

fact, in a previous work we concluded that mean long-term blood pressure is regulated

by the nervous system [1]. In that paper, both from a neurophysiologic and from a
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Figure 4 Arterial partial pressure of oxygen (pO2a). Partial pressure evolves with fluctuations until the
optimal value is achieved. The figure shows the dynamics of the first 200 iterations until the system adapts
(when the discharge when the frequency of chemo receptors fall to zero). For each animal maturation
takes place in a given time T, since 1,000 iterations were run, the unit is T/1,000. This comment applies to
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maximum value, evolves like chemoreceptor discharge. Pressure converges to the optimal value.
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control theory point of view, it was shown that the Nucleus Tractus Solitarius (NTS)

acts as a comparator, evaluating the error signal between its RNS afferents and the car-

diovascular receptors. It is so that these rostral afferents to the NTS would function as

the set point of cardiovascular regulation. Furthermore, it has been well established

that the maturation state of blood vessels sympathetic innervation at birth varies across

animal species, taking place mostly during the postnatal period [7]. On these bases, we

are introducing a simple neural network model to study from a neurophysiological

point of view how the NTS has the emergent property of a comparator and how its

RNS afferents act as the set point. In the model, during ontogeny of the cardiovascular

regulation, the nervous control adapts from the information fedback into the NTS by

chemoreceptors (and perhaps also by cardiopulmonary receptors) activity. Specifically,

from fixed values (chosen at random) representing the RNS afferents, the mean dis-

charge rates of the sympathetic efferents are adjusted through the chemoreceptor feed-

back varying the synaptic weights. Their discharge rates have to maintain tissue blood

flows so that the autoregulatory mechanisms can regulate the partial pressures of
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Figure 6 Venous partial pressure of oxygen (pO2vk) of each tissue (k). The partial pressures start from
random values and converge to the optimal values that provoke minimum chemoreceptor discharge.
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Figure 7 Venous partial pressure of carbon dioxide (pCO2vk) of each tissue (k). Partial pressures start
from random values and converge to the optimal values that provoke minimum chemoreceptor discharge.
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oxygen and carbon dioxide to normal values (pO2 = 95 mmHg and pCO2 = 40 mmHg,

for arteries, and pO2v = 40 mmHg and pCO2v = 45 mmHg, for veins).

Similar results could have been obtained assuming different plasticity functions. We

chose a simple function to test our hypothesis; however, when more neurobiological

data are available, a better simulation could be obtained. During development, the

renal curve would shift; this effect can be considered in the model by adding a con-

stant to the curve of blood flow as a function of the sympathetic discharge. Thus, the

system would adapt to any renal output curve change. The fact that the cardiovascular

receptors adapt does not affect the model due to the feedback, since in this model it is

sufficient that the NTS receives information about partial pressure changes. Neverthe-

less, this effect can also be easily included. In the model, the learning process could

happen not only during ontogeny but also when the system readapts to a new condi-

tion (if this was the case, constants at and bt would not have to diminish to zero).
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Figure 8 Chemoreceptor discharge rate (C). When arterial partial pressures drift from the normal values,
the chemoreceptors discharge, and do so until equilibrium is reestablished. The chemoreceptor discharge
rate reaches a maximum value, then slowly and with fluctuations decays to zero when learning is finished.
Measured in arbitrary values between 0 and 1.
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Figure 9 Sympathetic efferent discharge rate (Ek) of each tissue (k). The discharge rate values evolve
so that, after some fluctuations, all converge. Measured in arbitrary values between 0 and 1.
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In this model and during development, the partial pressures of O2 and CO2 are regu-

lated only by the information provided by the chemoreceptors (and maybe by the car-

diopulmonary ones) Even though this regulation is not as good as after ontogeny is

completed, it is good enough to control the cardiovascular variables in the fetus and in

the newborn. When ontogeny is finished, because of plastic changes in the sympathetic

efferent discharge rates, mean arterial blood flows (which come up as an overall result)

are regulated to keep the optimal partial pressures by the information provided via the

chemoreceptors (and maybe by the cardiopulmonary ones).

In the cardiovascular system, blood flow is controlled by arterial blood pressure, and in

this way the long-term mean blood pressure is stabilized to regulate oxygen and carbon

dioxide levels. Thereafter, the baroreflex would stabilize the instantaneous pressure

value to the prevailing carotid pressure (MAP). Baroreceptors appear as points of con-

tention, too, that are unimportant in determining the long-term level of MAP. However,

Terry Thrasher, cites and discusses studies in intact experimental animals suggesting

that their resetting may not be as rapid or complete as previously thought [38]. Results,

obtained using a new model of chronic baroreceptor unloading, indicate that the condi-

tion ends up in a sustained increase in MAP. These results suggest that the role of

baroreceptors in the long term control of MAP needs to be revisited. If the barorecep-

tors have any role in the long-term regulation, they could easily be included in the

model because the latter converge into the same pool of central neurons, as the arterial

receptors act in a similar way. In this model, they would affect the dynamic of the feed-

back loop, but the cardiovascular variables would converge to the same values.

In the model, after development, the discharge rates of the RNS projections to the

NTS functions as the set point of the open and closed loop of cardiovascular control.

The same brainstem nuclei that project fibers to the sympathetic and the parasympa-

thetic systems of the feedback loop are involved in a feedforward control [[1]; Figure

3]. The effect of these open loop projections can be simulated shifting the output

values of the nodes proportionally to the Rk values involved in this process. Since feed-

back is too slow to be involved in fast cardiovascular control reactions, the anticipatory

feedforward action would play an important role in such response. In cardiovascular

control there are modulation effects that would be easily simulated adding inhibitory

and/or excitatory projections from the RNS of the feedback loop.

In our previous paper on this very subject [1], we stated that the long-term blood pres-

sure regulation is controlled by the nervous system. Such view somewhat differs from

Guyton’s school, without ever disregarding the unquestionable involvement of diuresis

and natriuresis. Even more, any pharmacological agent active in the latter mechanisms

does it so because of the low loop gain. No doubt, there are still well-respected and

versed supporters of the “kidney-centric” view, such as Montani and Van Vliet and

Osborn et al [39]. However, in the light of overwhelming evidence for a major role of

the sympathetic nervous system in long-term control of arterial pressure and the patho-

genesis of hypertension, new theories for long-term control of arterial pressure may be

necessary. Despite the prominence and general acceptance of the Guyton-Coleman

model in the field of hypertension research, Osborn et al [40] argued that it overesti-

mates the importance of renal control. Furthermore, they suggested that it is possible to

construct alternative models in which sympathetic nervous system activity plays an
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important role in long-term control of arterial pressure. The latter two papers appeared

in a single issue where both standings were amply discussed.

About the set point and comparator concepts, Dampney et al [41], in 2002, stated

that the optimal level of arterial pressure is presumably determined by a balance

between the need of an adequate perfusion pressure and by the fact that, as pressure

increases, cardiac work and risk of damage to the heart and vessels also increases.

Besides, they added that the level around which arterial pressure is regulated, the “set

point”, varies under different conditions. During dynamic exercise, arterial pressure is

increased by approximately 15-20% for the benefit of a better blood flow to skeletal

muscles. Non the less, there are rather older antecedents, such as contributions put

forward by Zanutto et al, especially regarding the neural comparator [42-44]. In a simi-

lar direction (but without finding any mention to the comparator neural concept), Gre-

gory Fink, states that the ultimate goal of cardiovascular regulatory mechanisms is the

maintenance of tissue blood flows commensurate with metabolic requirements. Thus,

elevated BP can contribute to optimizing tissue blood flows. Perhaps part of the rise in

pressure is reflexly driven by a homeostatic mechanism to regulate tissue blood flows.

In this way, the average long-term level of BP is an emergent property of a decentra-

lized control system. Besides, these authors contend that the ability to generate a

hypertensive phenotype increases the species lifespan [45,46].

There remain aspects still to be addressed that call for further research and open dis-

cussion, as for example, how the model could be tested and what predictions would be

possible out of it. The main hypothesis of the model could be tested after finding the

plastic synapses involved in development of the sympathetic cardiovascular regulation.

It is that during that period, the plasticity is modulated by the feedback of the cardio-

vascular receptors in such a way that sympathetic afferents regulated the blood flow to

optimal values.

Rounding out and in short: We introduce a simple computational theory to simulate,

from a neurophysiologic point of view, the sympathetic development of cardiovascular

regulation from the feedback of cardiovascular receptors. After development, the sym-

pathetic discharge rates control arterial blood pressure to maintain tissue blood flows

so that the autoregulatory mechanisms can adjust the partial pressures of oxygen and

carbon dioxide to normal values.

Symbols
at: constant; bt: constant; C: chemoreceptor discharge rate; Ek: axon discharge rate of

neuron “k”; Fk: blood flow of tissue “k”; G: sigmoid function; N: number of neurons;

pCO2a: arterial carbon dioxide partial pressure; pCO2v: central venous carbon dioxide

partial pressure; pCO2vk: carbon dioxide partial pressure at the venous end of capil-

laries in tissue “k; pO2a: arterial oxygen partial pressure; pO2v: central venous oxygen

partial pressures; pO2vk: oxygen partial pressures at the venous end of capillaries in tis-

sue “k”; Rk: discharge rate of rostral neural structures afferent “k”; Sk: output from node

“k"; t: iteration counter; Wck: chemoreceptor input “k” synaptic weight; Wrk: rostral

neural structures input “k” synaptic weight; NTS: Nucleus of Tractus Solitarius; RNS:

Rostral Neural Structures.
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