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Abstract
Background: Transthoracic defibrillation is the most common life-saving technique for the
restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate
application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The
current density distribution under the electrodes is non-uniform, leading to muscle contraction and
pain, or risks of burning. The recent introduction of automatic external defibrillators and even
wearable defibrillators, presents new demanding requirements for the structure of electrodes.

Method and Results: Using the pseudo-elliptic differential equation of Laplace type with
appropriate boundary conditions and applying finite element method modeling, electrodes of
various shapes and structure were studied. The non-uniformity of the current density distribution
was shown to be moderately improved by adding a low resistivity layer between the metal and
tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term
wearable electrodes additionally disturbs the current density profile. However, a number of small-
size perforations may result in acceptable current density distribution.

Conclusion: The current density distribution non-uniformity of circular electrodes is about 30%
less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity,
comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further
improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an
appropriate selection of number and size provides a reasonable compromise.

Background
Defibrillation of the heart is widespread and well-estab-
lished procedure for resuscitation of cardiac arrest victims
[1]. The most accessible approach for electrical cardiac
therapy is via external electrodes, placed on selected loca-
tions on the surface of the thorax. The electrodes have
large contact area (70–120 cm2) [2] and provide high and
supposedly uniform current density distribution in the
heart, needed for excitation of most myocardial cells, thus
forcing them to return to normal rhythm. Many authors
have investigated optimal electrode positions and sizes

via two-dimensional (2D) [3,4] and three-dimensional
(3D) [5–7] finite-element method (FEM) models, with
the aim of obtaining uniform current distribution in the
heart. The uniformity is evaluated by the ratio of the max-
imum current (which could result in myocardial damage)
and the threshold current needed for defibrillation. For
example Camacho et al. [5] found values of 2 to 4.7 for
the anterior electrode position. Panescu et al. [6] reported
that about 25% of the myocardium volume could be sub-
jected to current densities more than 4 times higher than
the threshold density.
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Another aspect of the problem is the predominance of
high current density along the perimeter of large size elec-
trodes applied on human skin. In defibrillation and elec-
trosurgery it can lead to unwanted damage and even
severe skin burns [8–12] or electroporation [13], under
the electrode perimeter area. In transthoracic pacing, it re-
sults in strong excitation of sensory nerve endings and
provokes skeletal muscle contractions and pain [14,15].

To reduce these adverse effects, Wiley and Webster [8] sug-
gested concentric segmented electrodes with higher resist-
ance in the periphery, by the use of external resistors
adjusted to equalise the currents in the separate segments.
A similar approach has been considered in more detail by
Kim and co-workers [14]. They have proposed covering
the electrode metal with resistive gel of increasing resistiv-
ity toward the periphery, according to a specific relation
with respect to the electrode radius. An implementation
following such a design was tested on patients undergoing
atrial cardioversion [16]. The skin damage after defibrilla-
tion was assessed by skin biopsy in selected points under
the electrodes. The results showed less damage with the
use of the modified electrodes compared to the standard
ones. However, the authors noted that after separation of
the cases where high energies and currents were applied,
no difference was found in the skin damage data. This re-
sult was not explained. It might be due to breakdown of
the higher resistivity electrode layer, or to the overall in-
crease of the current density. Also, the skin resistivity and
reaction to increased current density and temperature may
very probably be nonlinear.

Another problem is related to skin irritation, resulting
from long-term application of the electrodes, when a pro-
tective wearable defibrillator-monitor is used [17]. In such
cases certain specific electrode designs were developed,
providing openings for improvement of skin aeration or
"breathing" [18].

The aim of the present work is to assess the current density
distribution under electrodes of different structure, in-
cluding shape, size, interfacing layer thickness and specific
conductivity.

Method
The problem can be reduced to the solution of the pseu-
do-elliptic differential equation of Laplace type, provided
the effects of quasi-stationarity are neglected.

The solution can be obtained for the scalar electrical po-
tential V in an electrically conductive domain consisting

of layers of different specific resistivity ρ. The equation is
solved subject to the following boundary conditions:

- Dirichlet boundary conditions imposed on the surface
SEi in contact with the ith electrode at potential Vi:

- Neumann boundary conditions state that the normal
component of the derivative of the potential is zero in the
remaining boundary plane (SB), not in contact with the
electrodes:

The current density distribution is defined by the poten-
tial gradient and the specific conductivity σ of the differ-
ent regions:

J(x,y,z) = σ (-gradV(x,y,z)),  (4)

here .

In this case, the propagation of the low frequency electro-
magnetic field is virtually free of the feedback action from
eddy currents, as the human tissue is weakly conductive.
Therefore, the skin effect can be neglected.

In this study, the finite element method (FEM) was used
to estimate the current density distribution in a partially
homogeneous conductive medium. It consists of homo-
geneous layers (Fig. 1a), simulating the electrode metal,
the electrode-skin interface and part of a human body. All
structures are modeled as purely resistive, as it has been
shown that in defibrillation there was no phase difference
between applied voltage and current passed through the
thorax [19,20].

Using software for FEM modelling and 3D-computer
graphics (parts of ANSYS 5.7 and MATLAB 5.2), a simpli-
fied 3D finite element model with over 50,000 eight-node
tetrahedron elements was developed (Fig. 1b). Since the
measurements were taken 0.5 mm under the electrode-
skin interface, the geometry of the thorax was simplified
and simulated as a cylindrical domain (10 cm radius; 10
cm height), with specific resistivity 20 Ωm. This value was
chosen as an approximate average of very high and very
low conductivities (soft tissue, blood and bone, lung air).
The estimated inter-electrode resistance R ≈ ρ l/S ≈ 65Ω (l
– distance between the electrodes, S – electrode surface),
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corresponds to the real conditions in defibrillation. The
electrodes, of about 80 cm2 area and 1 mm thickness,
were located on the surface of the upper and lower cylin-
der bases. The defibrillation voltage was applied on the
group of nodes forming the exterior electrode surface. The
inter-electrode potential difference used in all compara-
tive studies was set at 1000 V. This value was selected for
convenience, since the relative distribution is independ-
ent of the voltage applied. The interfacing gel was simulat-
ed by a thick (0.5 – 1.5 mm) low-resistivity (20 – 60 Ωm)
layer under the electrodes. Thus a varying layer resistance
was represented, in a range of 1.5% to 15% of the total
thoracic resistance, i.e. value from 1 to 10 Ω.

Results
Standard electrode configurations
The results of the current distribution simulation, ob-
tained for a plane at 0.5 mm under the most commonly
used electrode types – rectangular or square-shaped and
circular, is presented in Fig. 2a and 2b respectively. The
current density profiles along selected axes are shown at
the right side. The interfacing layer, of equal surface with
the electrode, was chosen of 20 Ωm specific resistivity and
0.5 mm thickness. Thus the total interface resistance un-
der both electrodes did not exceed 2.5 Ω. The square-

shaped (8.86 cm side) and circular (5 cm radius) elec-
trodes were of equal 80 cm2 area.

Circular electrode analysis
Circular electrodes of different sizes were compared. Two
types of electrodes were designed: one of 5 cm and anoth-
er of 2.5 cm radius. The respective current density distri-
butions are shown in Fig. 3. The interfacing layer
resistivity in both configurations was varied to obtain
equal non-uniformity, assessed by the so called "non-uni-
formity coefficient". The latter was chosen as the ratio (K)
of the maximum to the minimum current density:
K=Jmax/Jmin. The respective results are presented in Table
1.

In an attempt to obtain more uniform current distribu-
tion, a ring (2 mm width) of higher specific resistivity (ρ
= 100 Ωm) was added to the interface perimeter, with a
thin isolating barrier between the layer under the elec-
trode and the ring (Fig. 4). Thus the peak current density
decreased from 1780 A/m2 (1 – without ring) to 1570 A/
m2 (2 – with ring).

The influence of the interfacing layer thickness and specif-
ic resistivity ρ was examined by using an electrode of con-

Figure 1
Model of electrode-tissue contact. (a) Disposition of the electrodes (cross-section). (b) Finite-element model with over 50,000 
elements.
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Figure 2
Current density distribution profiles in a plane parallel to the electrode and 0.5 mm under the interface layer. Right-side graphs 
– current density along selected axes in this plane. (a) square-shaped electrode (8.86 cm side), area ~80 cm2; (b) circular elec-
trode (5 cm radius), area ~80 cm2.
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Figure 3
Current density distribution profiles under two circular electrodes. (1) 5 cm radius; (2) 2.5 cm radius.
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Figure 4
Current density distribution profiles under circular electrodes. Comparison between (1) r = 5 cm and (2) r = 5 cm and an addi-
tional surrounding ring solidified layer with ρ = 100 Ωm.
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stant radius (5 cm) and variable gel characteristics. Nine
simulations were performed: three for ρ = 20 Ωm (inter-
face thickness 0.5, 1.0 and 1.5 mm), and three each for ρ
= 40 Ωm and ρ = 60 Ωm, respectively. The results for the
estimated "non-uniformity" coefficient K as a function of
the overall electrode-interface resistance are presented in
Fig. 5.

The current density distribution in a plane perpendicular
to the circular electrode surface is shown in Fig. 6a. The
peak densities at the electrodes periphery decrease rela-
tively rapidly with depth in the 'thorax' domain. To better
observe this effect, several detailed profiles are taken along
the dotted axes, marked in the vertical-section plane, at

0.5, 10, 20 and 50 mm depth under the interfacing layer
surface (Fig. 6b).

Various electrode configurations
Electrodes of various shapes were designed, presumably
more suitable for long-term wearing. Their respective
shape and distribution profiles are shown in Figs.
7,8,9,10,11. The electrodes of Fig. 7, 10 and 11 are circular
(5 cm radius; 0.5 mm interface layer thickness; ρ = 20 Ωm)
with openings for improvement of skin aeration. We also
simulated an electrode where the openings were replaced
by conductive elements (Fig. 8). The four circular elec-
trodes in Fig. 9, each surrounded by an additional ring, are
of the same total area as the 5 cm radius circular electrode

Table 1: Comparative results for two electrodes with different radii.

Electrode Radius [cm] Interfacing layer (5 mm thickness) Jmax/Jmin [Am-2] K=Jmax/Jmin

ρ [Ωm] R [Ω ]

5 20 1.25 1780/570 3.12
2.5 4 1.25 2450/800 3.06
5 80 5.1 1490/550 2.71

2.5 20 5.1 2150/780 2.76

Figure 5
Effect of current density non-uniformity coefficient K of resistance layers with different thickness (D1 = 0.5 mm, D2 = 1.0 mm, 
D3 = 1.5 mm) and specific resistivity (ρ = 20, 40, 60 Ωm).
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Figure 6
Current density profile taken: (a) in a plane perpendicular to the electrode surface; (b) more detailed profiles along the dotted 
axes, marked in the vertical-section plane, at 0.5, 10, 20 and 50 mm depth.
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Figure 7
Current density distribution for a circular electrode with aeration openings. Right-side graphs – profiles along selected axes.

Figure 8
Current density distribution for a multi-disk electrode. Right-side graphs – profiles along selected axes.
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Figure 9
Current density distribution for a four-disk electrode with additional high-resistivity rings. Right-side graphs – profiles along 
selected axes.

Figure 10
Current density distribution for a circular electrode with sector-shaped aeration openings. Right-side graphs – profiles along 
selected axes.
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of Fig. 4. The "non-uniformity" coefficient of the current
density distribution profile reaches very high values (K >
11) in a plane 0.5 mm below the interfacing gel. The per-
formance of each electrode configuration was assessed
also by the current distribution profile along an axis in the
central region, at 50 mm depth in the 'thorax' domain
(Fig. 12).

Discussion
Commonly used rectangular electrodes (area ~80 cm2) ex-
hibit high non-uniformity of the current density distribu-
tion at the electrode-skin interface. The profile across the
corners shows a non-uniformity coefficient of 4.6 (Fig.
2a). The standard circular electrode with the same area
yields 32% lower non-uniformity (Fig. 2b).

Smaller electrodes produce higher current density, with
slightly lower non-uniformity (Fig. 3). However, the elec-
trode radius cannot be less than 4.7 cm for the minimum
area of 70 cm2, recommended for efficient defibrillation.

The resistance of the electrode-skin interfacing layer is a
major determinant of the maximum current density in the
distribution profile. Two electrodes with different radii
show equal non-uniformity, assessed by the coefficient K=

Jmax/Jmin, if the under-electrode layer specific resistivity
is chosen to provide the same electrode resistance (Table
1). This result was confirmed also for interfacing layers of
different thicknesses (Fig. 5). For example, a thick layer
with lower specific resistance (ρ = 20 Ωm and 1.5 mm
thickness) has the same performance as a thin layer with
higher ρ (ρ = 60 Ωm and 0.5 mm thickness). This result
did not confirm our expectations that the thickness of the
interface has a certain straightening effect on the current
lines. A higher layer resistance is associated with lower
non-uniformity, but it should not add more than 3–5% to
the total resistance of the defibrillation current path.
Many authors investigated the advantage of covering the
electrode metal with resistive layers of increasing resistivi-
ty toward the periphery [14,21]. Such a technique seems
technologically difficult and expensive for disposable
electrodes. The use of a ring of higher resistivity along the
electrode perimeter seems acceptable, as the resistance in
the current pathway was not increased, the maximum pe-
riphery current was reduced by 12% and the non-uni-
formity coefficient dropped to K = 2.71 (1570/580 A/m2).
The same result could be achieved with 3 times higher re-
sistance of a uniform layer. However, the problem of tech-
nological difficulties remains open.

Figure 11
Current density distribution for a circular electrode with small aeration openings. Right-side graphs – profiles along selected 
axes.
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Various electrode structures with openings for skin
"breathing" (Figs. 7,8,9,10,11), increase the effect of non-
uniformity, as the current density under the vents drops
strongly. However, the distribution non-uniformity be-
comes negligible with increased distance from the elec-
trode surface, as evident in Fig. 6. The bell-shaped
distribution in Fig. 12 is estimated for the central region
of the cylindrical thorax model, 50 mm under the interfac-
ing layer surface. Consequently, the current density distri-
bution under various electrode structures relates to effects
on the skin, rather than to the defibrillation efficiency.

Conclusion
The current density distribution non-uniformity of circu-
lar electrodes is about 30% smaller than that of square-
shaped electrodes. The use of an interface layer of interme-
diate resistivity, comparable to that of the underlying tis-
sues can further improve the distribution. A high-
resistivity perimeter ring adds a further 13% improvement
without increasing the total interface resistance, hence the

resistance to the defibrillation current, which is an impor-
tant advantage in defibrillation.

The inclusion of skin aeration openings for wearable elec-
trodes disturbs the current paths, but an appropriate selec-
tion of number and size provides a reasonable
compromise.
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