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Abstract
Background: Computer-assisted arrhythmia recognition is critical for the management of cardiac
disorders. Various techniques have been utilized to classify arrhythmias. Generally, these
techniques classify two or three arrhythmias or have significantly large processing times. A simpler
autoregressive modeling (AR) technique is proposed to classify normal sinus rhythm (NSR) and
various cardiac arrhythmias including atrial premature contraction (APC), premature ventricular
contraction (PVC), superventricular tachycardia (SVT), ventricular tachycardia (VT) and ventricular
fibrillation (VF).

Methods: AR Modeling was performed on ECG data from normal sinus rhythm as well as various
arrhythmias. The AR coefficients were computed using Burg's algorithm. The AR coefficients were
classified using a generalized linear model (GLM) based algorithm in various stages.

Results: AR modeling results showed that an order of four was sufficient for modeling the ECG
signals. The accuracy of detecting NSR, APC, PVC, SVT, VT and VF were 93.2% to 100% using the
GLM based classification algorithm.

Conclusion: The results show that AR modeling is useful for the classification of cardiac
arrhythmias, with reasonably high accuracies. Further validation of the proposed technique will
yield acceptable results for clinical implementation.

Background
Automatic ECG analysis is critical for diagnosis and treat-
ment of critically ill patients. Modeling and simulation of
ECG under various conditions are very important in un-
derstanding the functioning of the cardiovascular system
as well as in the diagnosis of heart diseases. Arrhythmias
represent a serious threat to the patient recovering from
acute myocardial infarction, especially ventricular ar-
rhythmias like ventricular tachycardia (VT) and ventricu-
lar fibrillation (VF). In particular, VT and VF are life-
threatening conditions and produce significant haemody-
namic deterioration [1]. There is a need for quick identifi-

cation of these conditions. Other arrhythmias like atrial
premature contraction (APC), premature ventricular con-
traction (PVC) and superventricular tachycardia (SVT) are
not as lethal as VF, but are important in diagnosing the
disorders of the heart. The reliable detection of these ar-
rhythmias constitutes a challenge for a cardiovascular di-
agnostic system. Consequently, significant amount of
research has focused on the development of algorithms
for accurate diagnosis of ventricular arrhythmias.

Various studies have been performed to classify various
cardiac arrhythmias [2–16]. A number of techniques have
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been used for identification of arrhythmias including cor-
rection waveform analysis [5], time-frequency analysis
[7], complexity measures [13], and a total least squares-
based Prony modeling algorithm [16]. Different features
are extracted from the ECG for classification of ventricular
arrhythmias including QRS and ST segment based values,
heart rate, spectral features, AR coefficients, complexity
measures and nonlinear measures [2–16].

Cardiac arrhythmias using two intracardiac channels can
be detected using the correlation waveform analysis
(CWA) [5]. CWA was used to detect morphologic changes
in the intracardiac electrogram when compared to electro-
grams during sinus rhythm. Each electrogram had its re-
spective template and the templates were obtained by
signal averaging the waveform from a passage of sinus
rhythm. The software trigger was used to align the tem-
plate with the cycle being tested. A window size of N point
defined each cycle.

Methods such as direct ECG feature detection [6], Fourier
transform [12], time-frequency analysis [7] and complex-
ity analysis [13] have also been employed. The main ob-
jective of the direct ECG feature detection was to
investigate how many different ventricular conduction de-
fects (VCD) categories can be formed by advanced cluster

analysis methods, which reduce the number of classifica-
tion parameters into a reasonably small set for a meaning-
ful classification. The second objective was to investigate
to what extent a select set of repolarization parameters
would help in identification of distinct VCD subgroups.
The study of detection of ECG features show that the key
features of ECG are QRS duration, T axis angle, T ampli-
tude, QRS axis angle and spatial angle. Typically, morpho-
logical features related to the P, QRS and ST waves are
used for ECG signal analysis [1].

A technique based on averaged threshold crossing inter-
vals was proposed for the detection of VT and VF based on
heart rate measurements [4]. A modified sequential detec-
tion algorithm was further proposed to improve the accu-
racy of detecting VT and VF [10]. A Fourier transform
based algorithm has been proposed for the detection of
supraventricular rhythms from ventricular rhythms [12].
Power spectra computed from the QRS complexes extract-
ed from ECG signals were classified using a neural net-
work. High sensitivity and specificity values greater than
98% have been reported for discriminating supraventricu-
lar rhythms from ventricular rhythms. However, SVT and
VT were grouped together as ventricular rhythms. A new
algorithm based on complexity measures was proposed
for the detection of NSR, VT and VF [13]. The algorithm
was tested for varying lengths of data and very high accu-
racy values were achieved for data lengths of 7 sec for clas-
sifying NSR, VT and VF. The algorithm was suggested for
real-time implementation in automatic external defibril-
lators.

Recently, a new approach for the discrimination among
VF, VT and SVT has been developed using a total least
squares-based Prony modeling algorithm [16]. Two fea-
tures, energy fractional factor (EFF) and predominant fre-
quency (PF) were derived from the total least squares
based Prony model. A two-stage classification method is
used in which the EFF is used for discriminating SVT from
VT and VF in the first stage followed by using PF for fur-
ther separation of VF and VT the second stage. A classifica-
tion accuracy of 95.24%, 96.00% and 97.78% were
reported for SVT, VF and VT respectively for the Prony
modeling algorithm. However, the total least squares-
based Prony modeling technique did not consider NSR,
APC and PVC for feature extraction and discrimination.

AR modeling has been used extensively to model heart
rate variability (HRV) and for power spectrum estimation
of ECG and HRV signals [17–21]. Amplitude modulated
sinusoidal signal model, which is a special case of the
time-dependent AR model have been applied to modeling
ECG signals [17]. Adaptive AR modeling with Kalman fil-
tering has been used [20]. Parameters extracted from AR
modeling have been used for arrhythmia classification in

Figure 1
GLM-based classification algorithm
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conjunction with other features [8]. For example, two AR
coefficients, along with the mean-square value of the QRS
complex segments were utilized as features for classifica-
tion of normal and abnormal PVC, where the prediction
order was only 2, a fuzzy adaptive resonance theory map-
ping (ARTMAP) was used for classification. The best result
of PVC correct detection were 92% under the ratios of the
training data size and testing data size was 2 to 4 [8]. It has
been suggested that increasing the model order would not
reduce the prediction error implying that a linear predic-
tor order of two is sufficient for fast cardiac arrhythmia de-
tection [22].

The objective of the present study is to model the ECG sig-
nal and classify certain cardiac arrhythmias at the ICU.
Most of the techniques involve significant amounts of
computation and processing time for extraction of fea-
tures and classification. The other disadvantage is the

small number of arrhythmias classified using a given tech-
nique with most techniques being used to classify two to
three arrhythmias [2,4–13,15,16]. There is a need for ex-
tending a particular technique for a larger number of ar-
rhythmias. In addition, the proposed technique should be
amenable to real-time implementation so that it can be
used in intensive care units.

In this study, the ECG signals were modeled using AR
analysis for classifying cardiac arrhythmias. The advantage
of AR modeling is its simplicity and it is suitable for real-
time classification at the ICU or ambulatory monitoring.
AR models are popular due to the linear form of the sys-
tem of simultaneous equations involving the unknown
AR model parameters and the availability of efficient algo-
rithm for computing the solution [23,24]. AR modeling
has been used in various applications including classifica-
tion of physiological signals like electroencephalograms

Figure 2
SNR for various AR model orders
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[25]. AR modeling is adapted for extracting good features
from ECG signals, thus enabling the discrimination of cer-
tain ECG arrhythmias. The computed AR coefficients were
checked for modeling accuracy for the various types of
ECG signals. Various pattern classification techniques
have been applied to the classification of arrhythmias
[3,12,14,16,26–28]. In the current study, the AR coeffi-
cients computed from the ECG signals were classified us-
ing a generalized linear model (GLM) [29]. Various
arrhythmias including Atrial Premature Contraction
(APC), Premature Ventricular Contraction (PVC), Super-
ventricular Tachycardia (SVT), Ventricular Tachycardia
(VT) and Ventricular Fibrillation (VF) were classified.

Methods
Preprocessing
ECG data for the analysis and classification was obtained
from the MIT-BIH arrhythmia database, the MIT-BIH Ven-

tricular Arrhythmia database and the MIT-BIH supraven-
tricular arrhythmia database. Various ECG segments were
selected from the databases for modeling and classifica-
tion. The data set included around 200 segments each of
normal ECGs, APCs, PVCs, SVTs, VTs and VFs. The sam-
pling frequency of the data from the MIT-BIH Arrhythmia
database was 360 Hz, the sampling frequency of the data
from the MIT-BIH ventricular arrhythmia database was
250 Hz and the sampling frequency of the data from the
MIT-BIH supraventricular arrhythmia was 128 Hz. The
data from the MIT-BIH arrhythmia and supraventricular
arrhythmia databases were re-sampled so that all the data
used in the analysis had a sampling frequency of 250 Hz.

Prior to modeling, the ECG signals were preprocessed to
remove noise due to power line interference, respiration,
muscles tremors, spikes etc., and to detect the R peaks in
the ECG signals. The R peaks of ECG were detected using

Figure 3
A patient ECG and simulated ECG having NSR
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Tompkins's algorithm [30]. The sample size affects the
segment selected for AR modeling and care must be taken
to pick at least one cardiac cycle so that the signal can be
accurately modeled and can be useful in diagnosis. Cardi-
ac cycle length or RR intervals differ for a normal sinus
rhythm and vary for different arrhythmias. A normal ECG
sinus rhythm refers to the usual case in health adults
where the heat rate is 60–100 beats per minutes. In APC,
a RR interval is shorter than normal, and the subsequent
interval is no longer than normal. In VF, the RR intervals
are much shorter than in a normal sinus rhythm. In the
current study, a sample size of 300 (1.2 seconds) was used
which consists of one hundred samples before the R peak
and 200 samples after the R peak. It is adequate to capture
most if not all of the information from a particular cardiac
cycle.

AR Modeling
AR analysis models the ECG signal as the output of a lin-
ear system driven by white noise of zero mean and un-
known variance [23,24]. AR models have the form

where v[k] is the ECG time series, n[k] is zero mean white
noise, ai's are the AR coefficients, and P is the AR order.

A critical issue in AR modelling is the AR order used to
model a signal. It is necessary to select an appropriate AR
order so that the signal is modelled with sufficient accura-
cy so as to be useful for classification. Various model or-
ders were used to estimate the accuracy of the

Figure 4
A patient ECG and simulated ECG with APC
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reconstructed signals. The criteria used for evaluating the
model order selection in this project were the correlation
coefficient ρ and the signal-to-noise (SNR) ratio. The cor-
relation coefficient ρ is computed using

where v(i) and (i) are the original and the simulated
signals at the ith instant, and m and  are the mean of the
original and simulated signals respectively and N is the
length of the modeled signal. The signal-to-noise ratio is
given by

Burg's algorithm was used to estimate the AR coefficients
with a pre-selected model order P[23,24].

GLM-based classification
In the current study, AR coefficients were used to classify
cardiac arrhythmias. A stage-by-stage GLM based classifi-
cation model has been used for classification of the vari-
ous cardiac arrhythmias. A GLM is given by [29]

Figure 5
A patient ECG and simulated ECG with PVC
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Figure 6
A patient ECG and simulated ECG with SVT

Table 1: Mean AR coefficients for ECG classes

Classes a(2) a(3) a(4) a(5)

NSR -2.244 1.855 -0.664 0.084
APC -2.351 1.871 -0.409 -0.089
PVC -2.238 2.112 -1.343 0.484
SVT -2.743 3.144 -1.844 0.479
VT -1.376 0.061 0.334 -0.009
VF -1.713 0.371 0.515 -0.165
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 = Aβ + ∈  (4)

where  = [y1,y2,...,yN]T is an N-dimensional vector of

observed responses, β = [β0, β1,...,βP]T is a P+1 dimension-
al vector of unknown parameters, A is N × (P + 1) matrix
of known predictors (AR coefficients) and ∈ =
[∈1,∈2,...,∈N]T is an N dimensional error vector.

The least squares estimator is given by

β = (ATA)-1AT   (5)

Generalized linear model based classification was per-
formed in stages to differentiate between the normal ECG

signals and the various cardiac arrhythmias. The various
stages of classification and groupings in every stage are
shown in Fig 1. During the training phase, the estimator β
was computed based on the known classes of ECG seg-
ments that form the training set. The AR coefficients and
the previously estimated β were used to compute the cor-
rect response at a particular stage of classification during
the testing phase. To perform the stage by-stage classifica-
tion, Euclidean distance measure between the AR coeffi-
cients of different classes was used to determine the
groupings of classes at each stage. The AR coefficients
[a(2),a(3),a(4),...,a(P+1)] of a particular ECG segment
were mapped to a response (1 or -1) in every stage of clas-
sification. In the current study, the observation matrix A =
[I, A2, A3, A4,..., Ap+1] where I is an identity vector and the
column vectors A2, A3, A4,..., Ap+1 consist of AR coeffi-
cients a(2), a(3), a(4),...,a(p+1) respectively of all the ECG
segments selected for training. The elements of vector 

Figure 7
A patient ECG and simulated ECG with VT
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were assigned values 1 or -1 depending on the member-
ship of an ECG segment to a corresponding class or group.
The number of elements in  was the number of exam-
ples in the training set. The estimator β was computed at
each stage of classification based on the selected training
sets. During testing, the output response (Y1 in stage 1, Y2
in stage 2, etc) was computed using the AR coefficients
and the previously estimated β at each stage. A threshold
value of zero was used to classify the output response as
belonging to a group at a particular stage. Sixty samples
from each class were used for training and the remaining
was used for testing in the classification phase. The train-
ing sets were picked randomly and the sensitivity and spe-
cificity were measured for the NSR and the arrhythmias
multiple times. The sensitivity and specificity was com-
puted for all the classes as given by

where TE represents the total number of events, FN repre-
sents false negative, and FP represents false positive [2].
The average sensitivity and specificity values were com-
puted for NSR and the cardiac arrhythmias.

Results
The AR modeling was applied to six different types of ECG
signals from the MIT-BIH database. Classification was per-
formed using a GLM-based classification algorithm.

Figure 8
A patient ECG and simulated ECG with VF
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AR modeling results
Two main criteria, SNR and ρ were used to evaluate the
performance of the AR model with different model orders.
The correction coefficients for all ECG signals were 0.99.
The SNR was calculated to be from 15.7 dB to 29.43 dB.
Figure 2 shows the variation of SNR as a function of mod-
el order P. The SNR increased initially with model order P,
but remains almost constant for model orders greater than
or equal to four. In addition, computing the AR coeffi-
cients of higher orders would increase the number of com-
putations. Hence, AR model of order four was used for
further classification. The parameters computed using this
model order were good enough to achieve a good SNR
and correlation coefficient ρ and were found to be sensi-
tive enough to differentiate the five types of ECG signals.
The original NSR, APC, PVC, SVT, VT and VF segments as
well as the modeled segments are shown in Figs 3,4,5,6,7
and 8.

The results were consistent with other studies on the selec-
tion of model order for AR modeling [22]. AR modeling
has been used for compression and it has been found that
increase in accuracy by increasing the order of the predic-
tor is negligible for predictors of order higher than 3 [22].

The mean AR coefficients for all the ECG types used in the
current study are shown in Table 1.

Classification results
AR coefficients computed with order four were used for
classification. Six types of ECG signals namely, NSR, APC,
PVC, SVT, VT, and VF were considered for classification.
Classification was performed using a generalized model
linear model, which was applied in various stages. Figure
1 shows the stage-by-stage GLM-based classification algo-
rithm for classifying various ECG signals. The six classes
were separated into two groups with Normal, APC, PVC,
and SVT signals forming one group and VT and VF form-
ing another group at stage one. This grouping was evident
by computing the Euclidean distance between the mean
AR coefficients from various classes. The Euclidean dis-
tance between classes VF and VT was small. Similarly, the
Euclidean distance among classes Normal, APC, PVC and
SVT was small. The distance between VF/VT and Normal/
APC/PVC/SVT was large and hence in the first stage, class-
es VT and VF were grouped together. The other group con-
sisted of classes Normal, APC, PVC and SVT. In the second
stage, VT and VT were differentiated. Stages three, four,
five and six were used to differentiate between NSR, APC,
PVC and SVT as shown in Fig 1.

The least squares estimator β was computed for various
stages and the value Y was used to determine the classes in
each stage. In the first stage (Y1), the AR coefficients from
an ECG signal was separated into two groups, one consist-
ing of NSR, APC, PVC and SVT and the other consisting of
VT and VF. In the second stage (Y2), VT and VF were dif-
ferentiated. In the third stage (Y3), SVT was distinguished
from NSR, APC and PVC. In the later stages (Y4, Y5 and
Y6), NSR, APV and PVC were distinguished from each
other and classified.

Table 2: GLM-based classification results for a sample training set

Testing data set Database Classification Resulting Classification

Classes NSR APC PVC SVT VT VF

143 NSR 133 6 4 0 0 0
140 APC 4 136 0 0 0 0
155 PVC 3 0 147 5 0 0
133 SVT 0 0 0 133 0 0
143 VT 0 0 0 0 140 3
142 VF 0 0 0 0 2 140

Table 3: Performance of GLM-based arrhythmia classification

Classes Sensitivity Specificity

NSR 93.2% 94.4%
APC 96.4% 96.7%
PVC 94.8% 96.8%
SVT 100% 96.2%
VT 97.7% 98.6%
VF 98.6% 97.7%
Page 10 of 12
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The GLM was tested with 143 NSRs, 140 APCs, 155 PVCs,
143 VTs, 142 VFs, and 133 SVTs, which were obtained
from the data sets by excluding the training data for each
class. The sensitivity and specificity values were computed
for all the ECG classes. The results of the GLM based clas-
sification are shown in Tables 2 and 3. The results for a
sample training set are shown in Table 2 and the mean
classification sensitivity and specificity for various classes
are shown in Table 3. The accuracy of detecting NSR, APC,
PVC, SVT, VT and VF were 93.2%, 96.4%, 94.8%, 100%,
97.7%, and 98.6% respectively.

Discussion
Different values of AR modeling orders were tested for the
ECG signals and the results showed that AR order of four
is sufficient to model the ECG signal for the purpose of
classification of selected arrhythmias. AR coefficients were
used to classify the ECG beats into normal and five select-
ed abnormal conditions. A stage-by-stage generalized lin-
ear model classification algorithm was used to distinguish
between the different types of arrhythmias under consid-
eration in the current study.

The classification results show that AR modeling can be
used to discriminate between different arrhythmias. The
classification results achieved using AR modeling is com-
parable to the recently published results on the classifica-
tion of cardiac arrhythmias [8–16]. Normal and abnormal
PVC conditions have been classified using LPC coeffi-
cients classified using a fuzzy ARTMAP classifier with sen-
sitivity of 97% and specificity of 99% [8]. Accuracy of 93%
and 96% has been reported for VT and VF respectively us-
ing a modified sequential probability ratio test algorithm
[10]. An overall accuracy of 93% to 99% was achieved
with decimated ECG data and artificial neural networks
[14]. However, the data set consisted of a high number of
NSR and PVC beats and the performance of beats includ-
ing atrial premature beats was not very high. The total
least squares-based Prony modeling technique produced
an accuracy of 95.24%, 96% and 97.78% for SVT, VT and
VF respectively [16].

AR modeling based classification algorithm has demon-
strated good performance in classification. The algorithms
are easy to implement and the AR coefficients can be eas-
ily computed. Preprocessing involves the detection of R
peaks for which a number of techniques are available that
can be implemented for real-time processing. A detailed
comparison of computation times has not been per-
formed; however, it is noted that computing the AR coef-
ficients is simpler than most proposed measures for
arrhythmia recognition. In addition, the computations
were performed for 1.2 seconds of data only compared to
3 to 7 seconds for the complexity measures based tech-

nique [13] and 5 to 9 seconds in the Prony modeling tech-
nique [16].

Some of the proposed techniques use only a smaller
number of arrhythmias (2–3) than the current study [2,4–
13,15,16]. The fuzzy ARTMAP technique has been used to
classify normal and abnormal PVC conditions only [8]. A
time sequenced adaptive filter has been proposed for VT
and VF alone [9]. A real time discrimination algorithm
with a Fourier-transform neural network has been has
been proposed to distinguish between superventricular
rhythms and ventricular rhythms in which PVC and VT
were lumped together as belonging to a single class of ven-
tricular rhythms [12]. The complexity measure-based
technique has been used to classify NSR, VT and VF [13].
A QRS feature based-algorithm for decimated ECG data
using artificial neural networks has been proposed that in-
clude various types of beats including APC and PVC, but
they do not include the life threatening conditions like VT
and VF [14]. The Prony modeling technique has been
used to classify SVT, VT and VF but their study does not in-
clude episodes from normal, APC or PVC [16]. The cur-
rent study classifies six different ECG classes and the
performance is comparable to those studies that involve
fewer classes.

In the current study, a fixed sample size has been used for
AR modeling. A variable sample size based on the estima-
tion of the R-R interval might yield better results inde-
pendent of the heart rate of the subjects. The
generalization capabilities of the AR model and the classi-
fication algorithms can be refined by applying the pro-
posed approach to a larger data set. Further work is in
progress to extend the proposed approach for classifica-
tion of other types of cardiac arrhythmias as well as apply-
ing it to other signals of the cardiovascular system such as
the hemodynamic signals, particularly for real-time appli-
cations. AR modeling is a linear modeling technique and
might not necessarily be suitable for ECG signals under all
conditions. Further work can be done to extend the cur-
rent work to nonlinear parametric models that can better
capture the non-linear and non-stationary nature of the
ECG.

In addition to their utility in classification and diagnosis,
AR coefficients can also be used for compression. AR mod-
eling can lead to a low cost, high performance, simple to
use portable telemedicine system for ECG offering a com-
bination of diagnostic capability with compression.

Conclusions
The proposed AR modeling and GLM for classification
have been shown to be effective for the classification of
cardiac arrhythmias in critically ill patients and aid in the
diagnosis of heart disease. AR modeling and GLM models
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are suitable for real-time implementations and can be
used for compression as well as diagnosis.
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