Marumoto K, Yokoyama K, Inoue T, Yamamoto H, Kawami Y, Nakatani A, et al. Inpatient enhanced multidisciplinary care effects on the quality of life for parkinson disease: a quasi-randomized controlled trial. J Geriatr Psychiatry Neurol. 2019;32(4):186–94.
Article
Google Scholar
Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, et al. Gait impairments in Parkinson’s disease. The Lancet Neurology. 2019;18(7):697–708.
Article
Google Scholar
Giladi N. Gait Disturbances. In: Factor SAWWE, editor. Parkinson’s Disease: Diagnosis and Medical Management. Demoss Medical Publishing; 2002. p. 57–65.
Google Scholar
Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of Gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–84.
Article
Google Scholar
Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME. Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch Phys Med Rehabil. 2013;94(3):562–70.
Article
Google Scholar
Ginis P, Nackaerts E, Nieuwboer A, Heremans E. Cueing for people with Parkinson’s disease with freezing of gait: A narrative review of the state-of-the-art and novel perspectives. Ann Phys Rehabil Med. 2017;61(6):407–13.
Article
Google Scholar
Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14(11):480–2.
Article
Google Scholar
Sweeney D, Quinlan LR, Browne P, Richardson M, Meskell P, Ólaighin G. A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease. 2019;19(6):1277.
Google Scholar
Morris ME, Iansek R, Matyas TA, Summers JJ. Stride length regulation in Parkinson’s disease: Normalization strategies and underlying mechanisms. Brain. 1996;119(2):551–68.
Article
Google Scholar
Rochester L, Nieuwboer A, Baker K, Hetherington V, Willems AM, Chavret F, et al. The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: Effect of cue modality and task complexity. J Neural Transm. 2007;114(10):1243–8.
Article
Google Scholar
Gowen E, Miall RC. Differentiation between external and internal cuing: an fMRI study comparing tracing with drawing. Neuroimage. 2007;36:396–410.
Article
Google Scholar
Rocha PA, Porfírio GM, Ferraz HB, Trevisani VFM. Effects of external cues on gait parameters of Parkinson’s disease patients: A sstematic review. Clin Neurol Neurosurg. 2014;124:127–34.
Article
Google Scholar
Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil. 2005;19:695–713.
Article
Google Scholar
Cassimatis C, Liu KPY, Fahey P, Bissett M. The effectiveness of external sensory cues in improving functional performance in individuals with Parkinson’s disease: A systematic review with meta-analysis. Int J Rehabil Res. 2016;39(3):211–8.
Article
Google Scholar
Spildooren J, Vercruysse S, Meyns P, Vandenbossche J, Heremans E, Desloovere K, et al. Turning and unilateral cueing in Parkinson’s disease patients with and without freezing of gait. Neuroscience. 2012;207:9.
Article
Google Scholar
Nieuwboer A, Kwakkel G, Rochester L, Jones D, Van Wegen E, Willems AM, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J Neurol Neurosurg Psychiatry. 2012;207:298–306.
Google Scholar
Quek DY, MacDougall K, Lewis H, Martens SJ. The influence of visual feedback on alleviating freezing of gait in Parkinson’s disease is reduced by anxiety. Gait Posture. 2022;95:70–5.
Article
Google Scholar
Coste CA, Sijobert B, Pissard-Gibollet R, Pasquier M, Espiau B, Geny C. Detection of freezing of gait in Parkinson disease: Preliminary results. Sensors (Switzerland). 2014;14(4):89.
Google Scholar
Mancini M, Shah VV, Stuart S, Curtze C, Horak FB, Safarpour D, et al. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. J Neuroeng Rehabil. 2021;18(1):1–3.
Article
Google Scholar
Moore ST, Yungher DA, Morris TR, Dilda V, Macdougall HG, Shine JM, et al. Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry. J Neuroeng Rehabil. 2013;10(1):1–1.
Article
Google Scholar
O’Day J, Lee M, Seagers K, Hoffman S, Jih-Schiff A, Kidziński Ł, et al. Assessing inertial measurement unit locations for freezing of gait detection and patient preference. J Neuroeng Rehabil. 2022;19(1):1–5.
Article
Google Scholar
Shalin G, Pardoel S, Lemaire ED, Nantel J, Kofman J. Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks. J Neuroeng Rehabil. 2021;18(1):1–5.
Article
Google Scholar
Rezvanian S, Lockhart TE. Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data. Sensors (Switzerland). 2016;16(4):475.
Article
Google Scholar
McCandless PJ, Evans BJ, Janssen J, Selfe J, Churchill A, Richards J. Effect of three cueing devices for people with Parkinson’s disease with gait initiation difficulties. Gait Posture. 2016;44:7–11.
Article
Google Scholar
Ferraye MU, Fraix V, Pollak P, Bloem BR, Debû B. The laser-shoe: A new form of continuous ambulatory cueing for patients with Parkinson’s disease. Park Relat Disord. 2016;29:127–8.
Article
Google Scholar
Ginis P, Nieuwboer A, Dorfman M, Ferrari A, Gazit E, Canning CG, et al. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: A pilot randomized controlled trial. Park Relat Disord. 2016;22:28–34.
Article
Google Scholar
Zhao Y, Nonnekes J, Storcken EJM, Janssen S, van Wegen EEH, Bloem BR, et al. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease. J Neurol. 2016;263(6):1156–65.
Article
Google Scholar
Janssen S, Bolte B, Nonnekes J, Bittner M, Bloem BR, Heida T, et al. Usability of three-dimensional augmented visual cues delivered by smart glasses on (Freezing of) gait in parkinson’s disease. Front Neurol. 2017;8:1–10.
Article
Google Scholar
Simonet C, Noyce AJ. Domotics, Smart Homes, and Parkinson’s Disease. J Parkinson’s Dis. 2021;11:S55–63.
Article
Google Scholar
Pepa L, Verdini F, Capecci M, Ceravolo MG. Smartphone based freezing of gait detection for Parkinsonian patients. In: 2015 IEEE International Conference on Consumer Electronics, ICCE 2015. 2015.
Tosserams A, Wit L, Sturkenboom IHWM, Nijkrake MJ, Bloem BR, Nonnekes J. Perception and use of compensation strategies for gait impairment by persons with Parkinson Disease. Neurology. 2021;97(14):e1404–12.
Article
Google Scholar
Springer S, Seligmann GY. Validity of the kinect for gait assessment: a focused review. Sensors. 2016;16(2):194.
Article
Google Scholar
Keus S, Munneke M, Graziano M, Paltamaa J, Pelosin E, Domingos J, Brühlmann S, Ramaswamy B, Prins J, Struiksma C, Rochester L. European physiotherapy guideline for Parkinson’s disease. The Netherlands: KNGF/ParkinsonNet. 2014:191.
Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Emil GE, Thomaes T, et al. Reliability of the new freezing of gait questionnaire: Agreement between patients with Parkinson’s disease and their carers. Gait Posture. 2009;30(4):459–63.
Article
Google Scholar
Klil-Drori S, Phillips N, Fernandez A, Solomon S, Klil-Drori AJ, Chertkow H. Evaluation of a Telephone Version for the Montreal Cognitive Assessment: Establishing a Cutoff for Normative Data From a Cross-Sectional Study. J Geriatr Psychiatry Neurol. 2021:08919887211002640.
Zitser J, Peretz C, Ber David A, Shabtai H, Ezra A, Kestenbaum M, et al. Validation of the Hebrew version of the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale. Park Relat Disord. 2017;45:7–12.
Article
Google Scholar
Hoehn MM. Parkinsonism: onset, progression, and mortality. Neurology. 1998;50(2):318–318.
Article
Google Scholar
Kamper SJ, Maher CG, Mackay G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. Journal of Manual and Manipulative Therapy. 2009;17(3):163–70.
Article
Google Scholar
Elo S, Kyngäs H. The qualitative content analysis process. J Adv Nurs. 2008;62(1):107–15.
Article
Google Scholar
Pallant J. SPSS survival manual: A step by step guide to data analysis using IBM SPSS. Routledge; 2020.
Newkirk LA, Kim JM, Thompson JM, Tinklenberg JR, Yesavage JA, Taylor JL. Validation of a 26-point telephone version of the mini-mental state examination. J Geriatr Psychiatry Neurol. 2004;17(2):81–7.
Article
Google Scholar
Pau M, Corona F, Pili R, Casula C, Guicciardi M, Cossu G, et al. Quantitative assessment of gait parameters in people with parkinson’s disease in laboratory and clinical setting: Are the measures interchangeable? Neurol Int. 2018;10(2):69–73.
Article
Google Scholar
Lee SJ, Yoo JY, Ryu JS, Park HK, Chung SJ. The effects of visual and auditory cues on freezing of gait in patients with parkinson disease. Am J Phys Med Rehabil. 2012;91(1):2–11.
Article
Google Scholar
Hausdorff JM. Gait dynamics in Parkinson’s disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos. 2009;19(2): 026113.
Article
Google Scholar
Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci. 2007;26(8):2369–75.
Article
Google Scholar
Baker K, Rochester L, Nieuwboer A. The effect of cues on gait variability-Reducing the attentional cost of walking in people with Parkinson’s disease. Park Relat Disord. 2008;14(4):314–20.
Article
Google Scholar
Lohnes CA, Earhart GM. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait Posture. 2011;33(3):478–83.
Article
Google Scholar
Baker K, Rochester L, Nieuwboer A. The Immediate Effect of Attentional, Auditory, and a Combined Cue Strategy on Gait During Single and Dual Tasks in Parkinson’s Disease. Arch Phys Med Rehabil. 2007;88(12):1593–600.
Article
Google Scholar
Yogev-Seligmann T, Krasovsky G, Kafri M. Compensatory movement strategies differentially affect attention allocation and gait parameters in persons with PD. Front Hum Neurosci. 2022;593:89.
Google Scholar
FrØkjaer E, Hertzum M, Hornbæk K. Measuring usability: Are effectiveness, efficiency, and satisfaction really correlated? In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems 2000 (pp. 345–352).
Andre AD, Wickens CD. When Users Want What’s not Best for Them. Ergon Des Q Hum Factors Appl. 1995;3(4):10–4.
Article
Google Scholar
Kapalo KA, Pfeil KP, Wisniewski P, LaViola JJ. The paradox of preference vs. performance: Towards a unified view of simulation experience In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2018: 62 (1): 1459–1463. Sage CA: Los Angeles, CA: SAGE Publications.
Nieuwboer A, Giladi N. The challenge of evaluating freezing of gait in patients with Parkinson’s disease. Br J Neurosurg. 2008;22(sup1):S16–8.
Article
Google Scholar
Mancini M, Bloem BR, Horak FB, Lewis SJG, Nieuwboer A, Nonnekes J. Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Mov Disord. 2019;34(6):783–90.
Article
Google Scholar
Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7.
Article
Google Scholar
Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83.
Article
Google Scholar
Latorre J, Colomer C, Alcañiz M, Llorens R. Gait analysis with the Kinect v2: Normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. J Neuroeng Rehabil. 2019;16(1):1–1.
Article
Google Scholar