Skip to main content

Table 5 Phenomenological Michaelis-Menten kinetic constants for chemical species and energy controller ratios in 26 reactions for three different loading states (SED, LD, UL). These are estimated as discussed in the Method section

From: A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise

Glucose Utilization:

Glycogen Synthesis:

GLU + ATP → G6P + ADP

G6P + ATP → GLY + ADP 2 + Pi

 

SED

LD

UL

 

SED

LD

UL

K GLU

0.07

0.07

0.14

K G6P

0.253

0.843

0.253

K G6P

0.253

0.084

0.253

K GLY

95

367

110

K ATP ADP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGubavcqqGqbauaeaacqqGbbqqcqqGebarcqqGqbauaaaabeaaaaa@34A5@

315

315

315

K Pi

2.7

9

2.7

    

K ATP ADP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGubavcqqGqbauaeaacqqGbbqqcqqGebarcqqGqbauaaaabeaaaaa@34A5@

315

315

315

Glycogen Utilization:

Glucose 6-Phosphate Breakdown:

GLY + Pi → G6P

G6P + ATP → 2 GA3P + ADP

 

SED

LD

UL

 

SED

LD

UL

K GLY

95

110

132

K G6P

0.253

0.169

0.38

K Pi

2.7

2.7

3.24

K GA3P

0.08

0.053

0.12

K G6P

0.253

0.253

0.304

K AMP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGnbqtcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34B7@

1.9e – 5

1.9e – 5

1.9e – 5

K AMP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGnbqtcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34B7@

3.2e – 6

3.2e – 6

3.2e – 6

    

Glyceraldehyde 3-Phosphate Breakdown:

Pyruvate Production:

GA3P + NAD+ + Pi → BPG + NADH

BPG + 2 ADP → PYR + 2 ATP

 

SED

LD

UL

 

SED

LD

UL

K GA3P

0.8

0.8

0.8

K BPG

0.4

0.4

0.4

K Pi

27

27

27

K PYR

0.238

0.238

0.238

K BPG

0.8

0.8

0.8

K ADP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGebarcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34A5@

0.029

0.029

0.029

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

0.09

0.09

0.09

    

Pyruvate Reduction:

Lactate Oxidation:

PYR + NADH → LAC + NAD+

LAC + NAD+ → PYR + NADH

 

SED

LD

UL

 

SED

LD

UL

K PYR

0.0475

0.016

0.0475

K LAC

1.75

0.583

1.75

K LAC

1.75

0.583

1.75

K PYR

0.0475

0.016

0.0475

K NADH NAD+ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaaaabeaaaaa@3671@

1

1

1

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

Alanine Production:

Lipolysis:

PYR → ALA

TGL → GLC + 3 FFA

 

SED

LD

UL

 

SED

LD

UL

K PYR

0.0475

0.0475

0.095

K TGL

14.8

52.2

18.5

K ALA

1.3

1.3

2.6

K GLC

0.062

0.186

0.062

    

K FFA

0.57

1.71

0.57

Pyruvate Oxidation:

Triglyceride Synthesis:

PYR + CoA + NAD+ → ACoA + NADH + CO2

GLC + 3 FFA + 7 ATP → TGL 7 + ADP + 7 Pi

 

SED

LD

UL

 

SED

LD

UL

K PYR

0.0475

0.0475

0.0475

K GLC

0.062

0.083

0.062

K CoA

0.0255

0.0255

0.0255

K FFA

0.57

0.76

0.57

K ACoA

2.2e – 3

2.2e – 3

2.2e – 3

K TGL

14.8

23.2

18.5

K CO2

23.6

23.6

23.6

K Pi

2.7

3.6

2.7

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

81

81

81

K ATP ADP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGubavcqqGqbauaeaacqqGbbqqcqqGebarcqqGqbauaaaabeaaaaa@34A5@

315

315

315

Free Fatty Acid Utilization:

Fatty Acyl-CoA Oxidation:

FFA + CoA + 2 ATP → FAC + 2ADP + 2Pi

FAC + 7 CoA + (35/3) NAD+ → 8 ACoA + (35/3) NADH

 

SED

LD

UL

 

SED

LD

UL

K FFA

0.57

0.76

0.43

K FAC

3.5e – 3

4.35e – 3

2.78e – 3

K CoA

0.026

0.034

0.019

K CoA

0.0255

0.0319

0.02

K FAC

3.5e – 3

4.6e – 3

2.6e – 3

K ACoA

2.2e – 3

2.8e – 3

1.8e – 3

K Pi

2.7

3.6

2

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

K ATP ADP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGubavcqqGqbauaeaacqqGbbqqcqqGebarcqqGqbauaaaabeaaaaa@34A5@

315

315

315

    

Citrate Production:

α-Ketoglutarate Production:

ACoA + OXA → CIT + CoA

CIT + NAD+ → AKG + NADH + CO2

 

SED

LD

UL

 

SED

LD

UL

K ACoA

2.2e – 3

3.2e – 3

1.8e – 3

K CIT

0.103

0.412

0.0824

K OXA

3.0e – 3

4.3e – 3

2.4e – 3

K AKG

0.0125

0.05

0.0125

K CIT

0.103

0.147

0.082

K CO2

23.6

94.4

23.6

K CoA

0.0255

0.0364

0.02

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

Succinyl-CoA Production:

Succinate Formation:

AKG + CoA + NAD+ → SCoA + NADH + CO2

SCoA +ADP + Pi → SUC + CoA + ATP

 

SED

LD

UL

 

SED

LD

UL

K AKG

0.0125

0.0179

0.01

K SCoA

0.123

0.176

0.0984

K CoA

0.0255

0.0364

0.02

K Pi

2.7

3.9

2.2

K SCoA

0.123

0.176

0.0984

K SUC

0.095

0.136

0.076

K CO2

23.6

33.7

18.9

K CoA

0.0255

0.0364

0.02

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

K ADP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGebarcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34A5@

3.2e – 3

3.2e – 3

3.2e – 3

Malate Production:

Oxaloacetate Production:

SUC + (2/3) NAD+ → MAL + (2/3) NADH

MAL + NAD+ → OXA + NADH

 

SED

LD

UL

 

SED

LD

UL

K SUC

0.095

0.238

0.0475

K MAL

0.0975

0.244

0.0488

K MAL

0.0975

0.244

0.0488

K OXA

3.0e – 3

7.5e – 3

1.5e – 3

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

K NAD+ NADH MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGobGtcqqGbbqqcqqGebarcqqGRaWkaeaacqqGobGtcqqGbbqqcqqGebarcqqGibasaaaabeaaaaa@3671@

9

9

9

Phosphocreatine Breakdown:

Phosphocreatine Synthesis:

PCR + ADP → CR + ATP

CR + ATP → PCR + ADP

 

SED

LD

UL

 

SED

LD

UL

K PCR

20

20

20

K CR

10

10

10

K CR

10

10

10

K PCR

20

20

20

K ADP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGebarcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34A5@

3.2e – 3

3.2e – 3

3.2e – 3

K ATP ADP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGubavcqqGqbauaeaacqqGbbqqcqqGebarcqqGqbauaaaabeaaaaa@34A5@

315

315

315

Oxygen Utilization:

ATP Hydrolysis

O2 + 5.63 ADP + 5.63 Pi + 1.88 NADH → 2 H2O + 5.63 ATP + 1.88 NAD+

ATP → ADP + Pi

 

SED

LD

UL

 

SED

LD

UL

K O2

0.01

0.01

0.01

K ATP

0.063

0.063

0.063

K NADH

0.07

0.09

0.06

    

K Pi

3.8

4.9

3.2

    

K NAD + MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaGaeeOta4KaeeyqaeKaeeiraq0aaWbaaWqabeaacqGHRaWkaaaaleqaaaaa@324D@

0.63

0.81

0.54

    

K ADP ATP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWsdaWgaaWcbaWaaSaaaeaacqqGbbqqcqqGebarcqqGqbauaeaacqqGbbqqcqqGubavcqqGqbauaaaabeaaaaa@34A5@

6.3e – 3

6.3e – 3

6.3e – 3

    

AMP Utilization:

AMP Production:

AMP + ATP → 2 ADP

2 ADP → AMP + ATP

 

SED

LD

UL

 

SED

LD

UL

K AMP

6e – 5

6e – 5

6e – 5

K ADP

0.02

0.02

0.02

K ATP

6.3

6.3

6.3

K AMP

6e – 5

6e – 5

6e – 5

K ADP

0.02

0.02

0.02

K ATP

6.3

6.3

6.3